

 1

TỔNG LIÊN ĐOÀN LAO ĐỘNG VIỆT NAM

TRƯỜNG TRUNG CẤP KINH TẾ - KỸ THUẬT SỐ 2

GIÁO TRÌNH

MÔ ĐUN: ĐIỀU KHIỂN HỆ THỐNG CƠ ĐIỆN TỬ

SỬ DỤNG VI ĐIỀU KHIỂN

NGÀNH, NGHỀ: CƠ – ĐIỆN TỬ

TRÌNH ĐỘ: TRUNG CẤP

(Ban hành kèm theo Quyết định số: /QĐ-TC2 ngày ..… tháng năm……..

của Hiệu trưởng Trường Trung cấp Kinh tế - Kỹ thuật số 2)

Đồng Nai, năm 2022

(Lưu hành nội bộ)

 2

TUYÊN BỐ BẢN QUYỀN

Tài liệu này thuộc loại sách giáo trình nên các nguồn thông tin có thể được phép

dùng nguyên bản hoặc trích dùng cho các mục đích về đào tạo và tham khảo.

Mọi mục đích khác mang tính lệch lạc hoặc sử dụng với mục đích kinh doanh

thiếu lành mạnh sẽ bị nghiêm cấm.

 3

LỜI GIỚI THIỆU

Công nghệ thông tin đang được ứng dụng rộng rãi trong nhiều lĩnh vực

khoa học công nghệ và cuộc sống thường nhật. Bên cạnh khối lượng phần mềm

hệ thống và ứng dụng đồ sộ, công nghệ phần cứng cũng phát triển vô cùng

nhanh chóng. Có thể nói các hệ thống máy tính được cải thiện trong những

khoảng thời gian rất ngắn, càng ngày càng nhanh hơn, mạnh hơn và hiện đại

hơn.

Những kiến thức cơ bản về phần cứng của các hệ thống máy tính luôn là

đòi hỏi cấp thiết trong quá trình điều khiển, giám sát các hệ thống công nghệ và

kỹ thuật hiện đại.

Giáo trình Điều khiển hệ thống cơ điện tử sử dụng Vi điều khiển này

được viết trên cơ sở những bài giảng theo sát đề cương môn học đã được thực

hiện tại Khoa Cơ – Điện tử trực thuộc Trường Trung cấp Kinh tế - Kỹ thuật số 2

từ khi thành lập đến nay, và luôn luôn được sửa chữa, bổ sung để đáp ứng nhu

cầu kiến thức của học sinh, sinh viên học tập tại Khoa.

Giáo trình được lưu hành nội bộ gồm bảy bài như sau:

Bài mở đầu: Sơ lược về lịch sử và hướng phát triển của vi điều khiển

Bài 1: Cấu trúc họ vi điều khiển 89C51

Bài 2: Tập lệnh 89C51

Bài 3: Bộ định thời

Bài 4: Cổng nối tiếp

Bài 5: Tổ chức ngắt

Bài 6: Phần mềm mô phỏng – Lập trình tổng hợp

Giáo trình với các bài tập ứng dụng theo các nội dung lý thuyết ở các bài

cụ thể giúp người học vận dụng ngay vào thực tế điều khiển.

Trong bài 6 tác giả đã giới thiệu hệ thống các bài tập thực hành tổng hợp

với những ứng dụng trong thực tiễn đời sống và sản xuất với mô tả đầy đủ về

yêu cầu công nghệ cũng như các địa chỉ vào – ra giúp người học có thể dễ dàng

thực hành và vận hành điều khiển và sáng tạo trong lập trình..

Tuy đã dành nhiều thời gian, nhưng chắc chắn còn nhiều thiếu sót, rất

mong các bạn đọc giả góp ý để tài liệu này hoàn chỉnh hơn.

Tôi chân thành cảm ơn Ban Giám hiệu nhà trường, Phòng Đào tạo và Khoa

Công nghệ thông tin đã tạo điều kiện để tôi được tham gia biên soạn giáo trình

 4

môn học này. Tôi cũng ghi nhận và cảm ơn Hội đồng nghiệm thu giáo trình của

nhà trường, cảm ơn các cán bộ kỹ thuật tại doanh nghiệp, bạn bè, đồng nghiệp

đã đóng góp các ý kiến thiết thực để tôi làm cơ sở hoàn chỉnh hơn giáo trình đưa

vào giảng dạy thực tế tại trường.

Đồng Nai, ngày 22 tháng 7 năm 2022

 Tham gia biên soạn:

Chủ biên: ThS. Trần Thị Bích Hạnh

 5

MỤC LỤC

LỜI GIỚI THIỆU ... 3
MỤC LỤC .. 5
GIÁO TRÌNH MÔ ĐUN .. 7
Bài mở đầu: Sơ lược về lịch sử và hướng phát triển của vi điều khiển. 14

1. Tóm tắt lịch sử ra đời và phát triển của các dòng vi xử lý và vi điều khiển 16
1.1 Vi xử lý ... 16
1.2 Vi điều khiển .. 16

2. Khái niệm về vi điều kiển .. 17
2.1 Vi điều khiển 8051 ... 18
2.2 Vi điều khiển AVR ... 19
2.3 Vi điều khiển PIC ... 21
2.4 Vi điều khiển ARM .. 22

3. Lĩnh vực và ứng dụng và hướng phát triển .. 23
3.1. Ưu điểm của vi điều khiển .. 23
3.2. Nhược điểm của vi điều khiển ... 24
3.3. Ứng dụng và hướng phát triển của vo điều khiển ... 24

Bài 1: Cấu trúc họ vi điều khiển 89C51 ... 25
1.1. Tổng quan: ... 27
1.2. Sơ đồ chân vi điều khiển 8051: ... 27
1.3. Cấu trúc port I/O ... 29
1.4. Tổ chức bộ nhớ: .. 30

1.4.1. Tổ chức bộ nhớ vật lý ... 30
1.4.2. Thiết kế vỉ nhớ cho hệ Vi xử lý .. 31

1.5. Ram nội và các thanh ghi chức năng đặc biệt SFR của 8051: 33
1.6. Bộ nhớ ngoài của họ 8051:.. 34

Bài 2: Tập lệnh 89C51 ... 36
2.1. Các khái niệm cơ bản: ... 38

2.1.1. Khái niệm về lệnh trong vi điều khiển ... 38
2.1.2. Các ký hiệu dùng trong mô tả lệnh: ... 38

2.2. Các cách định địa chỉ.: .. 38
2.3. Các nhóm lệnh ... 39

2.3.1. Nhóm lệnh di chuyển dữ liệu ... 39
2.3.2. Nhóm lệnh tính toán số học.. 42
2.3.3. Nhóm lệnh tính toán logic. ... 45
2.3.4. Nhóm lệnh rẽ nhánh chương trình.. 49
2.3.5. Nhóm lệnh điều khiển biến logic. .. 55

2.4. Một số bài tập luyện tập: ... 56
2.4.1. Trình tự thực hiện một mạch điều khiển .. 56
2.4.2. Một số bài tập áp dụng. .. 62
2.4.3. Nạp chương trình vào vi điều khiển: .. 67

Bài 3: Bộ định thời ... 68
3.1. Giới thiệu về bộ định thời của vi điều khiển ... 70

3.1.1. Các biến được định nghĩa trong time.h .. 70
3.1.2. Các Macro được định nghĩa trong time.h ... 70

3.2. Thanh ghi SFR của timer .. 70
3.4. Khởi tạo và truy xuất thanh ghi Timer .. 73

3.4.1. Hàm asctime() trong C ... 73
3.4.1. Hàm clock() trong C ... 74
3.4.3. Hàm ctime() trong C .. 75
3.4.4. Hàm difftime() trong C .. 76

 6

3.4.5. Hàm gmtime() trong C ... 78
3.4.6. Hàm localtime() trong C .. 79
3.4.7. Hàm mktime() trong C ... 81
3.4.8. Hàm strftime() trong C ... 82
3.4.9. Hàm time() trong C .. 85

Bài 4: Cổng nối tiếp ... 86
4.1. Khái quát chung .. 88

4.1.2. Cấu trúc khung trong giao tiếp không đồng bộ: ... 88
4.1.2. Tiêu chuẩn giao diện .. 88

4.2. Khởi tạo và truy xuất thanh ghi PORT nối tiếp .. 89
4.2.1. Baud Rate tính toán: ... 89
4.2.2. Đăng ký giao tiếp nối tiếp .. 89
4.2.3. Các bước lập trình .. 91

4.3. Luyện tập ... 91
Bài 5: Tổ chức ngắt .. 94

5.2. Xử lý ngắt. ... 96
5.2.1. Quy trình khi thực hiện một ngắt ... 96
5.2.2. Các bước cho phép và cấm ngắt ... 96

5.3. Thiết kế chương trình dùng ngắt ... 97
5.3.1 Cờ quay về 0 của bộ định thời và ngắt .. 97
5.3.2. Các bước lập trình ngắt định thời ... 98

5.4. Luyện tập ... 99
Bài 6: Phần mềm mô phỏng – Lập trình tổng hợp ... 100

6.1 Phần mềm mô phỏng Proteus ... 102
6.1.1. Giới thiệu phần mềm Proteus ... 102
6.1.2. Hướng dẫn sử dụng Proteus để vẽ sơ đồ nguyên lý (Schematic) 102

6.2. Thiết kế mạch điều khiển .. 108
6.2.1. Giao tiếp điều khiển led 7 đoạn .. 108
6.2.2. Đọc bàn phím: .. 110
6.2.3. Điều khiển LCD 16x2 .. 114
6.2.4. Điều chế độ rộng xung – Điều khiển tốc độ động cơ ... 121
6.2.5. Điều khển Led ma trận ... 129
a/ Sơ đồ mạch điện: .. 130
b/ Nguyên lí hoạt động: .. 131
6.2.6. Bài tập mở rộng .. 132

TÀI LIỆU THAM KHẢO .. 133

 7

GIÁO TRÌNH MÔ ĐUN

1. Tên mô đun: Điều khiển hệ thống cơ điện tử sử dụng vi điều khiển

2. Mã số mô đun: MĐ30

3. Vị trí, tính chất của mô đun:

3.1. Vị trí: Trước khi học mô đun này học sinh phải hoàn thành các mô đun: An toàn

lao động, Điện kỹ thuật, Đo lường điện điện tử, Điện tử công nghiệp, Kỹ thuật số, Kỹ

thuật cảm biến.

3.2. Tính chất: Là mô đun bắt buộc trong chương trình đào tạo nghề Cơ điện tử.

4. Mục tiêu mô đun:

4.1. Kiến thức:

 - Trình bày được cấu trúc họ vi điều khiển 89c51.

 - Đọc sơ đồ và phân tích nguyên lý hoạt động của mạch dùng vi điều khiển.

4.2. Kỹ năng:

- Vận hành được các thiết bị và dây chuyền sản xuất dùng vi điều khiển

- Đo thử, kiểm tra mạch điều khiển, phán đoán nguyên nhân gây hư hỏng, thay

thế mới và tương đương linh kiện hư hỏng.

- Viết được chương trình ứng dụng dùng vi điều khiển và mô phỏng mạch chạy

đúng theo yêu cầu trên phần mêm chuyên dùng.

- Lập trình và kết nối giao tiếp được với thiết bị ngoại vi: led đơn, Led 7 đoạn,

Led ma trận, động cơ…

4.3. Năng lực tự chủ và trách nhiêm:

- Tích cực, chủ động và sáng tạo trong học tập.

- Vệ sinh xưởng thực tập ngăn nắp, sạch sẽ, có tinh thần làm việc nhóm, có tác

phong công nghiệp

5. Nội dung chương trình:

5.1. Chương trình khung:

STT MÔN HỌC

Số

tín

chỉ

Thời gian học tập (giờ)

Tổng

giờ

Lý

thuyết

Thực hành/

thực tập/

thí nghiệm/

bài tập/

thảo luận

Thi/

Kiểm

tra/

BC

I. Các môn chung 12 255 94 148 13

MH01 Anh văn căn bản 4 90 30 56 4

MH02 Chính trị 2 30 15 13 2

 8

MH03 Pháp luật 1 15 9 5 1

MH04 Giáo dục thể chất 1 30 4 24 2

MH05 Giáo dục quốc phòng - An ninh 2 45 21 21 3

MH06 Tin học 2 45 15 29 1

II. Các môn học, mô đun cơ sở 17 270 135 118 17

MH07 Vật liệu công nghiệp 2 30 15 13 2

MH08 An toàn lao động 2 30 15 13 2

MH09 Điện kỹ thuật 3 45 30 13 2

MĐ10 Đo lường điện 2 30 15 13 2

MĐ11 Khí cụ điện 2 45 15 27 3

MH12 Vẽ kỹ thuật cơ khí 2 30 15 13 2

MH13 Vẽ kỹ thuật điện 2 30 15 13 2

MH14 Dung sai và đo lường kỹ thuật 2 30 15 13 2

III
Các môn học, mô đun chuyên

môn nghề
57 1440 347 1012 81

MĐ15 Máy điện 3 60 30 27 3

MĐ16 Điện tử công nghiệp 6 150 30 114 6

MĐ17 Kỹ thuật số 3 75 30 42 3

MH18 Tiếng Anh chuyên nghề Cơ điện tử 3 60 28 28 4

MĐ19 Trang bị điện 6 150 30 114 6

MĐ20 Kỹ thuật cảm biến 2 30 15 13 2

MH21 AUTOCAD 2 45 15 28 2

MĐ22 Tháo lắp các cụm máy công cụ 2 45 15 28 2

MĐ23 Điều khiển khí nén 3 75 15 57 3

MĐ24 Điều khiển thuỷ lực 3 75 15 57 3

MĐ25 Vận hành máy công cụ 2 45 15 28 2

MĐ26 Vận hành máy CNC 2 45 15 28 2

MĐ27 PLC căn bản 3 75 18 51 6

MĐ28
Điều khiển hệ thống cơ điện tử sử

dụng PLC
6 150 30 112 8

MĐ29 Thực tập tốt nghiệp 6 240 16 200 24

MĐ30
Điều khiển hệ thống cơ điện tử sử

dụng vi điều khiển
5 120 30 85 5

 Tổng cộng 86 1965 576 1278 111

5.2. Chương trình chi tiết của mô đun:

Số

TT
Tên các bài trong mô đun

Thời gian

Tổng

số

Lý

thuyết

Thực hành,

thí nghiệm,

thảo luận,

bài tập

Kiểm tra*

 9

1

Bài mở đầu: Sơ lược về lịch sử và

hướng phát triển của vi điều khiển

1. Lịch sử phát triển

2. Khái niệm vi điều khiển

3. Lĩnh vực và ứng dụng và hướng

phát triển

04

4

0

2

Bài 1: Cấu trúc họ vi điều khiển

89C51

1. Tổng quan

2. Sơ đồ chân

3. Cấu trúc Port I/O

4. Tổ chức bộ nhớ

5. Các thanh ghi chức năng đặc

biệt.

6. Bộ nhớ ngoài

08

4

4

3 Bài 2: Tập lệnh 89c51

1. Các khái niệm cơ bản

2. Các cách định địa chỉ

3. Các nhóm lệnh

4. Luyện tập

20 5 14 1

4 Bài 3: Bộ định thời

1. Giới thiệu về bộ định thời của

VĐK

2. Thanh ghi SFR của timer

3. Các chế độ làm việc

4. Khởi tạo và truy xuất thanh ghi

Timer

7. Luyện tập

16 4 11 1

5 Bài 4: Cổng nối tiếp

1. Khái quát chung

2. Khởi tạo và truy suất thanh ghi

PORT nối tiếp

3. Luyện tập

16 3 12 1

6 Bài 5: Tổ chức ngắt

1. Tổ chức ngắt

2. Xử lý ngắt

3. Thiết kế chương trình dùng ngắt

4. Luyện tập

28 4 23 1

7 Bài 6: Phần mềm mô phỏng – lập

trình tổng hợp

1. Phần mềm mô phỏng Protues

2. Thiết kế mạch điều khiển

28 6 20 2

 10

3. Các bài tập mở rộng

 Cộng 120 30 84 6

* Ghi chú: Thời gian kiểm tra được tích hợp giữa lý thuyết với thực hành được tính

vào giờ thực hành

6. Điều kiện thực hiện mô đun:

6.1. phòng học chuyên môn hóa, nhà xưởng: học tại xưởng thực hành vi điều khiển –

có trang bị các máy tính cài sẵn phần mềm mô phỏng.

6.2. Trang thiết bị máy móc:

 - Máy chiếu, máy tính cá nhân

 - Các phần tử modul chính cho thực hành vi điều khiển:

 + Bộ nguồn DC 5v, 12v, 24 V

 + Bộ nhập các tín hiệu vào

 - Kit thực hành vi điều khiển và mô hình kèm theo

6.3.Học liệu, dụng cụ, nguyên vật liệu:

 - Giáo trình vi điều khiển.

 - Tài liệu hướng dẫn sử dụng họ 89c51.

 - Sơ đồ các bài tập ứng dụng trên kit thực hành.

 - Phần mềm mô phỏng.

 - Linh kiện:

 Vi mạch 89c51, thạch anh, điện trở, tụ, rờ le, đông cơ, Led các loại theo bài

 Mạch in, dây nối chì hàn…..

 - Bộ dây điện, Testboard

 - Mỏ hàn, kềm cắt, kềm nhọn…

 - Đồng hồ VOM

 - Dụng cụ tháo, ráp vi mạch

7. Phương pháp và nội dung đánh giá:

7.1. Nội dung:

7.1.1. Về kiến thức:

Được đánh giá bằng hình thức kiểm tra viết, trắc nghiệm theo các nội dung: trình bày

cấu tạo, đặc điểm,ứng dụng của các loại Vi điều khiển được học

7.1.2. Về kỹ năng:

Đánh gía kỹ năng thực hành theo những nội dung sau:

Mỗi học viên, hoặc mỗi nhóm học viên thực hiện công việc sau đây theo yêu cầu của

giáo viên:

- Lắp ráp được các mạch ứng dụng từng phần do giáo viên đề ra.

- Thực hiện viết các chương trình theo yêu cầu cho trứoc

 11

Tiêu chí đánh giá theo các nội dung:

- Độ chính xác của công việc

- Tính thẩm mỹ của mạch điện

- Độ an toàn trên mạch điện

- Thời gian thực hiện công việc

- Độ chính xác theo yêu cầu kỹ thuật

7.1.3. Năng lực tự chủ và trách nhiệm:

Đánh giá phong cách học tập thể hiện ở: Tỉ mỉ, cẩn thận, chính xác.

 - Có ý thức tự giác, tính kỷ luật cao, tinh thần trách nhiệm trong công việc.

 - Có tinh thần hợp tác giúp đỡ lẫn nhau. Được đánh giá qua quá trình học tập.

7.2. Phương pháp:

Áp dụng hình thức kiểm tra tích hợp giữa lý thuyết với thực hành

7.2.1. Cách đánh giá

- Áp dụng quy chế đào tạo Trung cấp hệ chính quy ban hành kèm theo Thông tư

số 09/2017/TT-LĐTBXH, ngày 13/3/2017 của Bộ trưởng Bộ Lao động – Thương binh

và Xã hội.

- Hướng dẫn thực hiện quy chế đào tạo áp dụng tại Trường Trung cấp Kinh tế -

Kỹ thuật số 2 như sau:

Điểm đánh giá Trọng số

+ Điểm kiểm tra thường xuyên (Hệ số 1) 40%

+ Điểm kiểm tra định kỳ (Hệ số 2)

+ Điểm thi kết thúc môn học 60%

7.2.2. Phương pháp đánh giá

Phương pháp

đánh giá

Phương pháp

tổ chức

Hình thức

kiểm tra

Chuẩn đầu ra

đánh giá

Số

cột

Thời điểm

kiểm tra

Thường xuyên Viết/

Hỏi đáp tại lớp

Tự luận/

Trắc nghiệm/

Vấn đáp

A1, A2, A3,

B1, B2, B3,

C1, C2

2 Sau 08 giờ.

Định kỳ Viết/

Thực hành

theo nhóm

Tự luận/

Thực hành

A4, B4, C3 5 Sau 20 giờ

Kết thúc môn

học

Thực hành cá

nhân

Tự luận và

thực hành

A1, A2, A3, A4, A5,

 B1, B2, B3, B4, B5,

C1, C2, C3,

1 Sau 140

giờ

 12

7.2.3. Cách tính điểm

 - Điểm đánh giá thành phần và điểm thi kết thúc môn học được chấm theo

thang điểm 10 (từ 0 đến 10), làm tròn đến một chữ số thập phân.

 - Điểm môn học là tổng điểm của tất cả điểm đánh giá thành phần của môn học

nhân với trọng số tương ứng. Điểm môn học theo thang điểm 10 làm tròn đến một chữ

số thập phân, sau đó được quy đổi sang điểm chữ và điểm số theo thang điểm 4 theo

quy định của Bộ Lao động Thương binh và Xã hội về đào tạo theo tín chỉ.

8. Hướng dẫn thực hiện mô đun:

8.1. Phạm vi áp dụng chương trình:

- Chương trình mô đun được sử dụng để giảng dạy cho trình độ trunng cấp nghề.

- Chương trình có thể dùng để dạy học sinh ngắn hạn (sơ cấp nghề) có trình độ văn

hóa trên lớp 12 và đã qua đào tạo điện tử trung cấp có nhu cầu chuyển đổi nghề.

8.2. Hướng dẫn một số điểm chính về phương pháp giảng dạy, học tập mô đun:

Nội dung được biên soạn theo phương pháp tích hợp do đó cần lưu ý một số điểm

chính sau

 - Đối với giáo viên:

 + Trước khi giảng dạy cần phải căn cứ vào nội dung của từng bài học chuẩn bị

đầy đủ các điều kiện thực hiện bài học để đảm bảo chất lượng giảng dạy.

 + Vật liệu, dụng cụ và trang thiết bị phải được chuẩn bị đầy đủ trước khi thực

hiện bài giảng

 + Các bài thí nghiệm cần thực hiện theo thứ tự của hệ thống, có thể thêm vào các

bài tập ứng dụng.

 +Trong phần thực hành, giáo viên cần phải ôn lại các kiến thức có liên quan và

trình bày kỹ lưỡng các bước tiến hành. Sau mỗi bài tập phải thu lại các báo cáo để

đánh giá trình độ hiểu biết của học sinh. Giảng dạy các bài thực hành cần có mô hình,

vật thật, các sơ đồ nguyên lý, sơ đồ nối dây.

 + Trong các bài thực tập, Giáo viên giảng dạy chọn ra các bài thực hành tương

ứng với phần lý thuyết đã dạy.

 + Tăng cường sử dụng thiết bị, đồ dùng dạy học, trình diễn mẫu để tăng hiệu quả

dạy học.

 +Thực hiện giảng dạy ở nơi thực tập hoặc xưởng thực hành.

 + Hệ thống nguồn điện cung cấp cần được phân biệt và kiểm tra chính xác

trước khi cho học sinh thực tập.

- Đối với người học:

+ Học sinh cần được chia thành các nhóm nhỏ từ 1 đến 4 học sinh, để thực hiện nội

dung thực hành.

+Trước khi học mô đun này học sinh phải hoàn thành: An toàn lao động Điện kỹ thuật,

Đo lường điện điện tử, Điện tử công nghiệp.

+ Thực hiện theo hướng đẫn của giáo viên, tích cực, chủ động và sáng tạo trong học

tập.

+Chú ý an toàn điện cho người và thiết bị trong quá trình thực hành mạch.

 13

8.3. Những trọng tâm chương trình cần chú ý:

- Về phân bổ thời gian: Căn cứ vào thực tế của nơi đào tạo giáo viên hướng dẫn có thể

thay đổi thời lượng, của từng nội dung, nhưng vẫn phải đảm bảo số giờ qui định trong

chương trình.

- Về nội dung chi tiết trong chương trình: Căn cứ vào thực tế trang bị của nhà trường

hoặc nhu cầu đào tạo tại địa phương, nhà trường có thể thay thế các họ PLD tương

thích với nhu cầu đào tạo và thiết bị hiện có, nhưng vẫn phải đảm bảo mục tiêu của mô

đun.

- Cần giới thiệu các sản phẩm, mô hình thực tế để học sinh có thể tham gia bài giảng

và ghi nhớ sâu hơn.

- Cần chú ý các biện pháp an toàn về điện. Chống va đập, rơi rớt các thiết bị, thường xuyên

theo dõi học sinh trong học tập, thực hành.

8.4. Tài liệu tham khảo:

- Microprocessor and IC families - Walter H. Buchbaum. Sc.D

- Mikrocompute Lehrbuch - HPI Fachbuchreihen Pflaum Verlag Munchen

- 8951 Development Boad, Rev 5 - Paul Stoffregen

- The 8951 microcontroller - I. Scott Makenzie

- Họ vi điều khiển - Tống văn On - Đại học Bách khoa TP.HCM

 14

Bài mở đầu

Sơ lược về lịch sử và hướng phát triển của vi điều khiển.

❖ GIỚI THIỆU BÀI MỞ ĐẦU

Bài mở đầu là bài giới thiệu sơ lược về lịch sử và hướng phát triển của vi điều

khiển với những đặc điểm và phạm vi sử dụng của chúng để người học có được kiến

thức nền tảng và dễ dàng tiếp cận nội dung mô đun ở những bài tiếp theo.

❖ MỤC TIÊU CỦA BÀI MỞ ĐẦU

- Trình bày được cấu trúc chung của vi điều khiển

- Phát biểu được các ứng dụng của vi điều khiển và hướng phát triển của vi điều

khiển

- Tích cực, chủ động và sáng tạo trong học tập.

❖ PHƯƠNG PHÁP GIẢNG DẠY VÀ HỌC TẬP BÀI MỞ ĐẦU

- Đối với người dạy: sử dụng phương pháp giảng giảng dạy tích cực (diễn giảng,

vấn đáp, dạy học theo vấn đề); yêu cầu người học thực hiện câu hỏi thảo luận

của bài (cá nhân hoặc nhóm).

- Đối với người học: chủ động đọc giáo trình trước buổi học; hoàn thành đầy đủ

câu hỏi thảo luận theo cá nhân hoặc nhóm và nộp lại cho người dạy đúng thời

gian quy định.

❖ ĐIỀU KIỆN THỰC HIỆN BÀI MỞ ĐẦU

- Phòng học chuyên môn hóa/nhà xưởng: học tại xưởng thực hành vi điều

khiển – có trang bị các máy tính cài sẵn phần mềm mô phỏng.

- Trang thiết bị máy móc: Máy chiếu và các mô hình, thiết bị dạy học khác

- Học liệu, dụng cụ, nguyên vật liệu: Chương trình mô đun, giáo trình, tài liệu

tham khảo, giáo án, phim ảnh, và các KIT thực hành vi điều khiển.

- Các điều kiện khác: Không có

❖ KIỂM TRA VÀ ĐÁNH GIÁ BÀI MỞ ĐẦU

- Nội dung:

✓ Kiểm tra và đánh giá tất cả nội dung về kiến thức, kỹ năng đã nêu trong mục

tiêu của bài

✓ Năng lực tự chủ và trách nhiệm: Trong quá trình học tập, người học cần:

+ Nghiên cứu bài trước khi đến lớp

+ Chuẩn bị đầy đủ tài liệu học tập.

 15

+ Tham gia đầy đủ thời lượng môn học.

+ Nghiêm túc trong quá trình học tập.

- Phương pháp:

✓ Điểm kiểm tra thường xuyên: 1 điểm kiểm tra (hình thức - vấn đáp)

✓ Kiểm tra định kỳ lý thuyết: không có

 16

NỘU DUNG BÀI MỞ ĐẦU

1. Tóm tắt lịch sử ra đời và phát triển của các dòng vi xử lý và vi điều khiển

1.1 Vi xử lý

Vi xử lý được chế tạo từ các tranzito tích hợp trên một vi mạch tích hợp đơn.

Xuất hiện lần đầu tiên vào những năm đầu của thập kỷ 70 của thế kỷ 20. Sử dụng mã

BCD trên nền 4 bit. Các vi xử lý 4bit và 8 bit được sử dụng trong các thiết bị đầu cuối,

máy in, các hệ thống tự động...Đến giữa những năm 1970 thì lần đầu tiên các vi xử lý

8 bit với 16 bit địa chỉ được sử dụng như máy tính đa mục đích. Các hãng sản xuất vi

xử lý đầu tiên ở thời điểm này là Intel, Texas Instruments và Garrett AiResearch với

ba dòng chip tương ứng: Intel 4004, TMS 1000 và Central Air Data Computer. Đây là

những vi xử lý 4 bit. Sau sự ra đời của các vi xử lý 4 bit thì các hãng cho ra đời các

dòng 8 bit, 12 bit, 16 bit, 32 bit, 64 bit. Intel 8008 là vi xử lý 8 bit đầu tiên trên thế giới

được sản xuất năm 1972. Tiếp sau thành công của 8008 là các phiên bản như 8080

(1974), Zilog Z80 (1976). Các vi xử lý của Motorola 6800 được phát hành tháng 8

năm 1974 và MOS technology ra đời năm 1975. Intersil 6100 là vi xử lý 12 bit, từ khi

được sản xuất bởi công ty Harris nó được biết đến với tên HM-6100 được sử dụng

trong quân đội suốt thập niên 1980. Vi xử lý 16 bit đầu tiên được giới thiệu bởi hãng

National Semiconductor IMP-16 vào năm 1973 đây là vi xử lý đa chip. Đến năm 1975

hãng này giới thiệp vi xử lý đơn chip đầu tiên. Hãng Texas Instruments ra đời vi xử lý

16 bit đơn chip TI-990 sử dụng như một máy tính mini. Intel cũng cho ra đời dòng vi

xử lý 16 bit lấy tên 8086. Vi xử lý 16 bit chỉ xuất hiện trên thị trường một thời gian

ngắn thì dòng 32 bit đã bắt đầu xuất hiện. MC6800 là vi xử lý 32 bit đầu tiên của hãng

Motorola, họ 68k có 32 bit thanh ghi nhưng sử dụng đường dẫn dữ liệu 16 bit bên

trong và 16 bit dữ liệu bên ngoài để giảm số lượng pin, hỗ trợ 24 bit địa chỉ. Motorola

thường được biết đến như vi xử lý 16 bit mặc dù nó có cấu trúc 32 bit. Vi xử lý 32 bit

đầy đủ đầu tiên là AT&T Bell Labs BELLMAC-32A với mẫu đầu tiên vào năm 1980

và sản xuất năm 1982. Vi xử lý 32 bit đầu tiên của Intel là dòng iAPX 432 được giới

thiệu năm 1981 nhưng không thu được thành công. Vi xử lý ARM đầu tiên ra đời năm

1985 với thiết kế RISC viết tắt của reduced instruction set computer máy tính có tập

lệnh rút gọn, các vi xử lý ARM được sử dụng chủ yếu trong các điện thoại di động. Vi

xử lý 64 bit được thiết kế cho các máy tính cá nhân. Nó được thiết kế vào đầu những

năm 1990 đến đầu những năm 2000 chứng kiến vi xử lý 64 bit nhằm vào thị trường

máy tính. Vi xử lý AMD 64 bit tương thích ngược với x86, x86-64 còn gọi là AMD64

trong tháng 9 năm 2003, tiếp sau thành công của Intel64. Kỷ nguyên của máy tính 64

bit đã bắt đầu.

1.2 Vi điều khiển

Vi điều khiển là một máy tính được tích hợp trên một chíp, nó thường được sử

dụng để điều khiển các thiết bị điện tử. Vi điều khiển thực chất gồm một vi xử lý có

hiệu suất đủ cao và giá thành thấp (so với các vi xử lý đa năng dùng trong máy tính)

kết hợp với các thiết bị ngoại vi như các bộ nhớ, các mô đun vào/ra, các mô đun biến

đổi từ số sang tương tự và từ tương tự sang số, mô đun điều chế độ rộng xung

 17

(PWM)... Vi điều khiển thường được dùng để xây dựng hệ thống nhúng. Nó xuất hiện

nhiều trong các dụng cụ điện tử, thiết bị điện, máy giặt, lò vi sóng, điện thoại, dây

truyền tự động... Hầu hết các loại vi điều khiển hiện nay có cấu trúc Harvard là loại

cấu trúc mà bộ nhớ chương trình và bộ nhớ dữ liệu được phân biệt riêng. Cấu trúc của

một vi điều khiển gồm CPU, bộ nhớ chương trình (thường là bộ nhớ ROM hoặc bộ

nhớ Flash), bộ nhớ dữ liệu (RAM), các bộ định thời, các cổng vào/ra để giao tiếp với

các thiết bị bên ngoài, tất cả các khối này được tích hợp trên một vi mạch. Các loại vi

điều khiển trên thị trường hiện nay:

• Freescale 68HC11 (8-bit)

• Intel 8051

• STMicroelectronics STM8S (8-bit), ST10 (16-bit) và STM32 (32-bit)

• Atmel AVR (8-bit), AVR32 (32-bit), và AT91SAM (32-bit)

• Freescale ColdFire (32-bit) và S08 (8-bit)

• Hitachi H8 (8-bit), Hitachi SuperH (32-bit)

• MIPS (32-bit PIC32)

• PIC (8-bit PIC16, PIC18, 16-bit dsPIC33 / PIC24)

• PowerPC ISE

• PSoC (Programmable System-on-Chip)

• Texas Instruments Microcontrollers MSP430 (16-bit), C2000 (32-bit), và

Stellaris (32-bit)

• Toshiba TLCS-870 (8-bit/16-bit)

• Zilog eZ8 (16-bit), eZ80 (8-bit)

• Philips Semiconductors LPC2000, LPC900, LPC700

2. Khái niệm về vi điều kiển

Có thể nói việc sử dụng các loại vi điều khiển và vi xử lý trong các thiết bị điện

tử tự động ở Việt Nam rất đa dạng, phong phú tùy vào yêu cầu kỹ thuật và giá thành

sản phẩm.

Đối với các thiết bị như các máy ATM, máy giặt thường sử dụng vi điều khiển

8051, các bộ điều khiển trong robot công nghiệp, trong hệ thống ô tô thường sử dụng

PIC, AVR, PsoC, còn trong điện thoại sử dụng các chip ARM…

 18

2.1 Vi điều khiển 8051

Intel 8051 - là vi điều khiển đơn tinh thể kiến trúc Harvard, lần đầu tiên được sản xuất

bởi Intel năm 1980, để dùng trong các hệ thống nhúng. Trong những năm 1980 và đầu

http://k3.arduino.vn/img/2016/07/31/0/2801_812450-1469950628-0-vi-dieu-khien-image002.gif
http://k1.arduino.vn/img/2016/07/31/0/2819_123450-1469950643-0-5-6e5d7853ae4e81af5954a6931fb7db7b.jpg
http://k1.arduino.vn/img/2016/07/31/0/2819_123450-1469950643-0-5-6e5d7853ae4e81af5954a6931fb7db7b.jpg

 19

những năm 1990 đã rất nổi tiếng. Tuy nhiên hiện tại đã cũ và được thay thế bằng các

thiết bị hiện đại hơn, với các lõi phối hợp 8051, được sản xuất bởi hơn 20 nhà sản xuất

độc lập như Atmel, Maxim IC (công ty con của Dallas Semiconductor), NXP

Semiconductors (Philips Semiconductor trước đây), Winbond, Silicon Laboratories,

Texas Instruments và Cypress Semiconductor. Tên gọi chính thức của họ vi điều khiển

Intel 8051 - MCS 51. Những vi điều khiển Intel 8051 được sản xuất với việc dùng

công nghệ MOSFET, những những bản sau, chứa kí hiệu “C” trong tên, như 80C51,

dùng công nghệ CMOS và yêu cầu công suất thấp, hơn những cái MOSFET trước

(điều này cho phép trang bị cho các thiết bị với nguồn là pin). Các thông số kỹ thuật: 8

bit ALU, 8 bit thanh ghi. 8 bit dữ liệu bus 16 bit địa chỉ bus vì vậy không gian bộ nhớ

tối đa cho ROM và RAM lên tới 64 kb Bộ nhớ dữ liệu SRAM 128 bytes Bộ nhớ

chương trình ROM 4 kb. 32 chân vào/ra đa hướng. Giao tiếp nối tiếp UART. Hai bộ

timer/counter 16 bit. Hai ngắt ngoài. Sơ đồ chân của 8051: Sơ đồ khối điều khiển: Lập

trình cho 8051: Các nhà sản xuất 8051 đều hỗ trợ ngôn ngữ lập trình Assembler tuy

nhiên ngôn ngữ này thường ít được dùng cho những ứng dụng lớn do tính phù hợp của

nó, vì vậy trong các ứng dụng thực tế hay sử dụng ngôn ngữ C. Ngoài ra còn một số

ngôn ngữ khác được phát triển cho 8051 như Pascal, Basic, Forth.

2.2 Vi điều khiển AVR

Là dòng vi điều khiển do hãng Atmel sản xuất có nhiều loại AVR như:

• 32-bit AVR UC3.

• 8/16-bit AVR XMEGA.

• 8-bit mega AVR.

• 8-bit tiny AVR.

Vi điều khiển Atmega 16: Là vi điều khiển 8 bit với tiêu thụ điện năng thấp dựa

trên kiến trúc RISC (Reduced Instruction Set Computer). Vào ra Analog – digital và

ngược lại. Với công nghệ này cho phép các lệnh thực thi chỉ trong một chu kì xung

nhịp, vì thế tốc độ xử lý dữ liệu có thể đạt đến 1 triệu lệnh trên giây ở tần số 1Mhz. Vi

điều khiển này cho phép người thiết kế có thể tối ưu hoá chế độ tiêu thụ năng lượng

mà vẫn đảm bảo tốc độ xử lý. Lõi AVR có tập lệnh phong phú với số lượng với 32

thanh ghi làm việc chung với nhau. Tất cả 32 thanh ghi đều được nối trực tiếp với

ALU (Arithmetic Logic Unit), cho phép 2 thanh ghi truy cập độc lập trong một chỉ

lệnh đơn trong một chu kỳ xung nhịp. Kiến trúc đạt được có tốc độ xử lý nhanh gấp 10

lần vi điều khiển dạng CISC (Complex Instruction Set Computer) thông thường.

Atmega 16 được hỗ trợ đầy đủ phần mềm và công cụ phát triển hệ thống bao gồm:

Trình dịch Assembly như AVR studio của Atmel, Trình dịch C như win AVR,

CodeVisionAVR C, ICCAVR. C - CMPPILER của GNU… Trình dịch C đã được

nhiều người dùng và đánh giá tương đối mạnh, dễ tiếp cận đối với những người bắt

đầu tìm hiểu AVR, đó là trình dịch CodeVisionAVR C. Phần mềm này hỗ trợ nhiều

ứng dụng và có nhiều hàm có sẵn nên việc lập trình tốt hơn. - Bộ nhớ: Flash 16KB

 20

EEPROM 512 Byte SRAM 1KB. - Ngoại vi: Hai timer 8 bit Một timer 16 bit Bộ

counter với tần số riêng Bốn bộ điều chế độ rộng xung PWM. Tám kênh ADC 10 bit.

USART. Giao tiếp SPI, Giao diện I2C. Watchdog timer. Bộ so sánh tương tự trên chip.

- Tính năng: Tập lệnh gồm 131 lệnh, hầu hết thực hiện trong một chu kỳ máy. Xử lý

16 triệu lệnh ở tần số 16 MHZ. 32 chân vào/ra có thể lập trình được. Sáu chế độ sleep .

40 pin kiểu PDIP, 44 pin kiểu TQFP và kiểu QFL/MLF. 32 thanh ghi 8 bit đa dụng.

Ngắt trong và ngắt ngoài. Điện áp hoạt động từ 2,7-5,5V cho Atmega 16A.

-Sơ đồ chân

http://k2.arduino.vn/img/2016/07/31/0/2796_882450-1469950699-0-vi-dieu-khien-image006.jpg

 21

Sơ đồ khối điều khiển:

2.3 Vi điều khiển PIC

PIC là một họ vi điều khiển RISC được sản xuất bởi công ty Microchip

Technology. Dòng PIC đầu tiên là PIC1650 được phát triển bởi Microelectronics

Division thuộc General Instrument . PIC bắt nguồn là chữ viết tắt của "Programmable

Intelligent Computer" (Máy tính khả trình thông minh). Là vi điều khiển với kiến trúc

RISC thực thi một lệnh với một chu kỳ máy (bằng bốn chu kỳ của bộ dao động). Ngày

nay có nhiều dòng PIC được sản xuất với hàng loạt các mô đun ngoại vi tích hợp sẵn

như ADC, PWM, USART, SPI…với bộ nhớ chương trình từ 512 word đến 32 Kword.

 22

Các họ vi điều khiển PIC: - Họ 8 bit: PIC 10/ PIC 12/ PIC 16/ PIC 18 - Họ 16 bit: PIC

24F/ PIC 24H/ dsPIC 30/ dsPIC 33 - Họ 32 bit: PIC 32. Một vài đặc tính:

• Chân vào/ra I/O có thể lập trình được.

• Flash và ROM có thể tuỳ chọn từ 256 byte đến 512 Kbyte

• Bộ dao động bên trong.

• 8/16/32 bit Timers.

• Bộ nhớ EEPROM nội

• Chuẩn giao tiếp nối tiếp đồng bộ và không đồng bộ USART

• MSSP Peripheral cho giao tiếp I2C và SPI

• Các chế độ so sánh, bắt giữ và điều chế độ rộng xung PWM.

• Bộ so sánh điện áp.

• Bộ chuyển đổi ADC (tần số có thể lên tới 1 MHz).

• Hộ trợ các giao thức USB, CAN, Ethernet.

• Mô đun điều khiển động cơ, mô đun đọc encoder.

• Hộ trợ bộ nhớ ngoài.

• DSP những tính năng xử lý tín hiệu số (dsPIC)

Lập trình cho PIC: Hãng Microchip cung cấp môi trường lập trình MPLAB nó bao

gồm phần mềm mô phỏng, trình dịch ASM, liên kết và gỡ rối. Ngoài ra hãng này cũng

bán trình biên dịch C cho các dòng PIC18 và dsPIC tích hợp trong MPLAB. Ngoài ra

còn một số công ty khác cung cấp trình biên dịch C, PASCAL, BASIC cho PIC đó có

thể là phần mềm thương mại hoặc phần mềm mã nguồn mở.

2.4 Vi điều khiển ARM

Cấu trúc ARM (viết tắt từ tên gốc là Acorn RISC Machine) là một loại cấu trúc vi

xử lý 32-bit kiểu RISC được sử dụng rộng rãi trong các thiết kế nhúng. Được phát

triển lần đầu trong một dự án của công ty máy tính Acorn. Do có đặc điểm tiết kiệm

năng lượng, các bộ CPU ARM chiếm ưu thế trong các sản phẩm điện tử di động, mà

với các sản phẩm này việc tiêu tán công suất thấp là một mục tiêu thiết kế quan trọng

hàng đầu. Ngày nay, hơn 75% CPU nhúng 32-bit là thuộc họ ARM, điều này khiến

ARM trở thành cấu trúc 32-bit được sản xuất nhiều nhất trên thế giới. CPU ARM được

tìm thấy khắp nơi trong các sản phẩm thương mại điện tử, từ thiết bị cầm tay (PDA,

điện thoại di động, máy đa phương tiện, máy trò chơi cầm tay, và máy tính cầm tay)

cho đến các thiết bị ngoại vi máy tính (ổ đĩa cứng, bộ định tuyến để bàn.). Một nhánh

nổi tiếng của họ ARM là các vi xử lý Xscale của Intel. Giới thiệu về vi điều khiển

LPC2148: Là dòng vi điều khiển ARM được sản xuất bởi hãng Philips. Tính năng:

 23

• Vi điều khiển 16/32-bit ARM7TDMI-S

• 40k RAM tĩnh (8k +32k), 512k flash

• Tích hợp USB 2.0

• Hộ trợ hai bộ ADC 10 bit

• Một bộ DAC 10 bit

• 2 bộ timer 32 bit, 6 ngõ điều chế độ rộng xung

• Đồng hồ thời gian thực hỗ trợ tần số 32kHz

• Khả năng thiết lập chế độ ưu tiên và định địa chỉ cho ngắt

• 45 chân GPIO vào ra đa dụng

• 9 chân ngắt ngoài (tích cực cạnh hoặc tích cực mức)

• CPU clock đạt tối đa 60MHz thông qua bộ PLL lập trình được

• Xung PLCK hoạt động độc lập.

On-chip Flash Memory: LPC 2148 có 512K bộ nhớ Flash có thể được dùng để lưu

trữ code và dữ liệu. Trong khi thực thi ứng dụng, vẫn có thể xóa hoặc lập trình Flash

thông qua IAP (In Application Programming). Khi đó trình loader trên chip được sử

dụng, bộ nhớ trống còn lại là 500K. Bộ nhớ Flash có thể ghi xóa được ít nhất 100000

lần, lưu trữ dữ liệu đến 20 năm. On-chip Static RAM: LPC 2148 có 32K RAM tĩnh, có

thể được truy xuất theo đơn vị byte, half word & word. Bộ điều khiển SRAM sử dụng

phương thức write-back buffer để ngăn chặn tình trạng treo CPU khi có thao tác ghi.

Bộ đệm luôn giữ dữ liệu cuối cùng từ chương trình gửi tới bộ nhớ. Dữ liệu chỉ được

ghi vào SRAM khi có 1 thao tác ghi khác từ chương trình. Lập trình cho ARM: Ngôn

ngữ lập trình chính cho ARM hiện nay là ngôn ngữ C. Các trình biên dịch cho ARM

thường được dùng:

• Keil ARM.

• IAR.

• HTPICC for ARM.

• ImageCraft ICCV7 for ARM

3. Lĩnh vực và ứng dụng và hướng phát triển

Các dòng vi điều khiển từ đơn giản đến phức tạp rất đa dạng tùy vào yêu cầu kỹ

thuật và giá thành của sản phẩm mà chọn loại vi điều khiển thích hợp cho việc thiết kế

và lập trình sản phẩm.

3.1. Ưu điểm của vi điều khiển

Những ưu điểm chính của vi điều khiển là:

 24

 a) Vi điều khiển hoạt động như một máy vi tính không có bất kỳ bộ phận kỹ

thuật số nào.

 b) Tích hợp cao hơn bên trong vi điều khiển làm giảm chi phí và kích thước

của hệ thống.

 c) Việc sử dụng vi điều khiển rất đơn giản, dễ khắc phục sự cố và bảo trì hệ

thống.

 d) Hầu hết các chân được lập trình bởi người dùng để thực hiện các chức năng

khác nhau.

 e) Dễ dàng kết nối thêm các cổng RAM, ROM, I / O.

 f) Cần ít thời gian để thực hiện các hoạt động.

3.2. Nhược điểm của vi điều khiển

a) Vi điều khiển có kiến trúc phức tạp hơn so với vi xử lý.

 b) Chỉ thực hiện đồng thời một số lệnh thực thi giới hạn.

 c) Chủ yếu được sử dụng trong các thiết bị vi mô.

 d) Không thể trực tiếp giao tiếp các thiết bị công suất cao.

 3.3. Ứng dụng và hướng phát triển của vo điều khiển

Chúng ta có thể tìm thấy vi điều khiển trong tất cả các loại thiết bị điện tử hiện

nay. Bất kỳ thiết bị nào liên quan đến đo lường, lưu trữ, điều khiển, tính toán hoặc hiển

thị thông tin đều phải có chip vi điều khiển bên trong. Ứng dụng lớn nhất của vi điều

khiển là trong ngành công nghiệp ô tô (vi điều khiển được sử dụng rộng rãi để kiểm

soát động cơ và điều khiển công suất trong ô tô). Bạn cũng có thể tìm thấy vi điều

khiển bên trong bàn phím, chuột, modem, máy in và các thiết bị ngoại vi khác. Trong

thiết bị thử nghiệm, vi điều khiển giúp bạn dễ dàng thêm các tính năng như khả năng

lưu trữ số đo, tạo và lưu trữ các thói quen của người dùng và hiển thị thông báo cũng

như dạng sóng. Sản phẩm tiêu dùng sử dụng bộ vi điều khiển bao gồm máy quay kỹ

thuật số, đầu phát quang, màn hình LCD / LED…

 25

Bài 1: Cấu trúc họ vi điều khiển 89C51

❖ GIỚI THIỆU BÀI 1

Bài 1 là bài giới thiệu tổng quan về cấu trúc phần cứng của VĐK 89C51 và tổ chức

bộ nhớ của vi điều khiển. Trên cơ sở đó người học có được kiến thức về cấu trúc và

các địa chỉ vùng nhớ của VĐK làm tiền đề cho việc lập trình điều khiển ở các nội dung

tiếp theo.

❖ MỤC TIÊU CỦA BÀI 1

- Mô tả được cấu trúc họ vi điều khiển.

- Thực hiện truy xuất bộ nhớ dữ liệu, bộ nhớ chương trình đúng qui

trình kỹ thuật

- Thực hiện đúng kỹ thuật phương pháp mở rộng bộ nhớ ngoài.

- Trình bày được nguyên lý hoạt động của mạch reset

- Tích cực, chủ động và sáng tạo trong học tập.

❖ PHƯƠNG PHÁP GIẢNG DẠY VÀ HỌC TẬP BÀI 1

- Đối với người dạy: sử dụng phương pháp giảng giảng dạy tích cực (diễn giảng,

vấn đáp, dạy học theo vấn đề); yêu cầu người học thực hiện câu hỏi thảo luận

của bài (cá nhân hoặc nhóm).

- Đối với người học: chủ động đọc giáo trình trước buổi học; hoàn thành đầy đủ

câu hỏi thảo luận theo cá nhân hoặc nhóm và nộp lại cho người dạy đúng thời

gian quy định.

❖ ĐIỀU KIỆN THỰC HIỆN BÀI 1

- Phòng học chuyên môn hóa/nhà xưởng: học tại xưởng thực hành vi điều

khiển – có trang bị các máy tính cài sẵn phần mềm mô phỏng.

- Trang thiết bị máy móc: Máy chiếu và các mô hình, thiết bị dạy học khác

- Học liệu, dụng cụ, nguyên vật liệu: Chương trình mô đun, giáo trình, tài liệu

tham khảo, giáo án, phim ảnh, và các KIT thực hành vi điều khiển.

- Các điều kiện khác: Không có

❖ KIỂM TRA VÀ ĐÁNH GIÁ BÀI 1

- Nội dung:

✓ Kiểm tra và đánh giá tất cả nội dung về kiến thức, kỹ năng đã nêu trong mục

tiêu của bài

✓ Năng lực tự chủ và trách nhiệm: Trong quá trình học tập, người học cần:

+ Nghiên cứu bài trước khi đến lớp

 26

+ Chuẩn bị đầy đủ tài liệu học tập.

+ Tham gia đầy đủ thời lượng môn học.

+ Nghiêm túc trong quá trình học tập.

- Phương pháp:

✓ Điểm kiểm tra thường xuyên: 1 điểm kiểm tra (hình thức - vấn đáp)

✓ Kiểm tra định kỳ lý thuyết: không có

 27

NỘU DUNG BÀI 1

1.1. Tổng quan:

 Hiện nay, các bộ vi điều khiển 8 bit đứng đầu là họ 8051 có số lương lớn nhất

các nhà cung cấp đa dạng (nhiều nguồn). Nhà cung cấp có nghĩa là nhà sản xuất bên

cạnh nhà sáng chế của bộ vi điều khiển. Trong trường hợp 8051 thì nhà sáng chế của

nó là Intel, nhưng hiện nay có rất nhiều hãng sản xuất nó (cũng như trước kia đã sản

xuất).

Các hãng này bao gồm: Intel, Atmel, Philips/signe-tics, AMD, Siemens, Matra

và Dallas, Semicndictior.

Bảng địa chỉ của một số hãng sản xuất các thành viên của họ 8051.

Hãng Địa chỉ Website

Intel

Antel

Plips/ Signetis

Siemens

Dallas Semiconductor

www.intel.com/design/mcs51

www.atmel.com

www.semiconductors.philips.com

www.sci.siemens.com

www.dalsemi.com

 8051 là một bộ xử lý 8 bit có nghĩa là CPU chỉ có thể làm việc với 8 bit dữ liệu

tại một thời điểm. Dữ liệu lớn hơn 8 bit được chia ra thành các dữ liệu 8 bit để cho xử

lý. 8051 có tất cả 4 cổng vào - ra I/O mỗi cổng rộng 8 bit. Các nhà sản xuất đã cho

xuất xưởng chỉ với 4K byte ROM trên chíp.

Bảng các đặc tính của 8051 đầu tiên.

Đặc tính Số lượng

ROM trên chíp

RAM

Bộ định thời

Các chân vào - ra

Cổng nối tiếp

Nguồn ngắt

4K byte

128 byte

2

32

1

6

 Trong máy tính, con chíp Intel hay ADM là 1 bộ vi xử lí, nó không có RAM,

ROM,cổng IO và các thiết bị ngoại vi on Chip. Còn vi điều khiển chứa 1 bộ vi xử lí và

RAM,ROM, cổng IO, và có thể có các thiết bị ngoại vi.

1.2. Sơ đồ chân vi điều khiển 8051:

 Là IC đóng vỏ dạng DIP có 40 chân, mỗi chân có một kí hiệu tên và có các

chức năng như sau:

http://www.atmel.com/
http://www.dalsemi.com/

 28

 * Chân 40: nối với nguồn nuôI +5V.

 * Chân 20: nối với đất(Mass, GND).

 * Chân 29 (PSEN)(program store enable) là tín hiệu điều khiển xuất ra của

8051, nó cho phép chọn bộ nhớ ngoài và được nối chung với chân của OE (Outout

Enable) của EPROM ngoài để cho phép đọc các byte của chương trình. Các xung tín

hiệu PSEN hạ thấp trong suốt thời gian thi hành lệnh. Những mã nhị phân của chương

trình được đọc từ EPROM đi qua bus dữ liệu và được chốt vào thanh ghi lệnh của

8051 bởi mã lệnh.(chú ý việc đọc ở đây là đọc các lệnh (khác với đọc dữ liệu), khi đó

VXL chỉ đọc các bit opcode của lệnh và đưa chúng vào hàng đợi lệnh thông qua các

Bus địa chỉ và dữ liệu)

 * Chân 30 (ALE : Adress Latch Enable) là tín hiệu điều khiển xuất ra của 8051,

nó cho phép phân kênh bus địa chỉ và bus dữ liệu của Port 0.

 Chân 31 (EA : Eternal Acess) được đưa xuống thấp cho phép chọn bộ nhớ mã ngoàI

đối với 8051.

 Đối với 8051 thì: EA = 5V: Chọn ROM nội. EA = 0V: Chọn ROM ngoại.

* Chân 18, 19 nối với thạch anh tạo thành mạch tạo dao động cho VĐK

 Tần số thạch anh thường dùng trong các ứng dụng là : 11.0592Mhz(giao tiếp với

cổng com máy tính) và 12Mhz

 Tần số tối đa 24Mhz. Tần số càng lớn VĐK xử lí càng nhanh.

Dao dộng cua thạch anh

 S1 S2 S3 S4 S5 S6

 P1 P2

1 chu ki máy

Một chu kì máy = 12 dao động của thạch anh tần số thạch anh là 12 Mhz có

nghĩa là tần số làm việc của chip là 1Mhz <-> chu kì là 1uS.Lệnh lập trình cho vi điều

khiển có lệnh vi điều khiển mất 1 chu kì máy mới thực hiện xong, có lệnh nhiều hơn

một chu kì máy. Cụ thể khi lập trính sẽ biết lệnh đó bao nhiêu chu kì máy.

* Chân 9 được mắc với 1 mạch ngoài tạo thành mạch reset. Khi reset VĐK hoạt

động lại từ đầu. (Ram bị xóa, các thanh ghi bị xóa)

 29

Mạch RESET

* 32 chân còn lại chia làm 4 cổng vào ra

1.3. Cấu trúc port I/O

 Với 4 cổng vào ra (Port I/O) tức là có thể dùng chân đó để đọc mức logic (0;1 tương

ứng với 0V ; 5V)vào hay xuất mức logic ra(0;1)

 P0 từ chân 39 → 32 tương ứng là các chân P0_0 → P0_7

 P1 từ chân 1 → 8 tương ứng là các chân P1_0 → P1_7

 P2 từ chân 21 →28 tương ứng là các chân P2_0 → P2_7

 P3 từ chân 10 → 17 tương ứng là các chân P3_0 → P3_7

P0 P1 P2 P3 Port's Bit

P0.0 P1.0 P2.0 P3.0 D0

P0.1 P1.1 P2.1 P3.1 D1

P0.2 P1.2 P2.2 P3.2 D2

P0.3 P1.3 P2.3 P3.3 D3

P0.4 P1.4 P2.4 P3.4 D4

P0.5 P1.5 P2.5 P3.5 D5

P0.6 P1.6 P2.6 P3.6 D6

P0.7 P1.7 P2.7 P3.7 D7

U1

AT89C51

31

19
18

9

12
13
14
15

1
2
3
4
5
6
7
8

39
38
37
36
35
34
33
32

21
22
23
24
25
26
27
28

17
16

29
3011

10

40

20

EA/VP

X1
X2

RESET

INT0
INT1
T0
T1

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

RD
WR

PSEN
ALE/PTXD

RXD

VCC

VSS

U3

8051

9

40

20

RESET

VCC

VSS

5VDC

+ C4

CAPACITOR POL

R1
R

 30

Riêng cổng 3 có 2 chức năng ở mối chân như trên hình vẽ:

 P3.0 – RxD : chân nhận dữ liệu nối tiếp khi giao tiếp RS232(Cổng COM).

 P3.1 _ TxD : phân truyền dữ liệu nối tiếp khi giao tiếp RS232.

 P3.2 _ INTO : interrupt 0 , ngắt ngoài 0.

 P3.3 _ INT1: interrupt 1, ngắt ngoài 1.

 P3.4 _T0 : Timer0 , đầu vào timer0.

 P3.5_T1 : Timer1, đầu vào timer 1.

 P3.6_ WR: Write, điều khiển ghi dứ liệu.

 P3.7 _RD: Read , điều khiển đọc dữ liệu.

1.4. Tổ chức bộ nhớ:

1.4.1. Tổ chức bộ nhớ vật lý

Tổ chức bộ nhớ cho một hệ Vi xử lý (máy vi tính) phụ thuộc không chỉ

vào một hệ Vi xử lý cụ thể, mà còn phụ thuộc vào cách bố trí thuận lợi bên trong

hệ thống. Trước hết, hãy làm quen với các khái niệm chip nhớ và từ nhớ để phân

tích vấn đề tổ chức vật lý một bộ nhớ, sau đó mở rộng khái niệm tổ chức theo

quan điểm của người lập trình (tổ chức logic).

Các chip nhớ được sản xuất dưới nhiều kích cỡ khác nhau, phụ thuộc vào

công nghệ chế tạo. Chip nhớ là một vi mạch cụ thể, được bố trí các chân cơ bản

như Hình III.8 Các chân của một chip nhớ thông thường gồm các lối vào của

BUS địa chỉ, lối dữ liệu, các chân điều khiển chọn chip, ghi/đọc và các chân

nguồn.

Tuỳ theo từng chip, số lượng chân địa chỉ và số lượng chân dữ liệu có thể

khác nhau phụ thuộc vào độ dài từ nhớ của chip và dung lượng của chip nhớ.

Độ dài từ nhớ của chip nhớ có thể là 1bit, 4 bits hoặc 8 bits, trong khi số chân

địa chỉ có thể từ 10 trở lên tuỳ thuộc vào dung lượng của chip nhớ. Trong trường

hợp độ dài từ nhớ của chip là 1 bit, ta cần phải ghép song song 8 chip để tạo

thành 1 byte, ghép song song 16 chip để tạo một từ word – 2 bytes).

A6

A5

A4

A3

A0

A1

A2

A7

A8

A9

D1

D2

D3

D4

WE

Vcc

CS

GND

1

9 10

18

A0 ÷ A9 Các chân địa chỉ
D1 ÷ D4 Các chân dữ liệu
CS Chân chọn chip
WE Điều khiển Ghi/Đọc
Vcc Chân nguồn nuôi +5V
GND Chân nối đất

Hình III.8 Sơ đồ nối chân một vi mạch nhớ

RAM 1Kx4

 31

1.4.2. Thiết kế vỉ nhớ cho hệ Vi xử lý

Thiết kế vỉ nhớ là một việc rất quan trọng và rất cần thiết trong việc xây

dựng một hệ Vi xử lý. Các vỉ nhớ được thiết kế thông thường là EPROM, các

loại vỉ nhớ RAM, từ các chip nhớ có sẵn. Thông thường, các chíp nhớ được

chọn là những chip thông dụng trên thị trường, có các thông số kỹ thuật chủ yếu

sau:

a. Dung lượng nhớ của chip nhớ tính theo đơn vị Kbyte

b. Độ dài từ nhớ của chíp nhớ tính theo số bits

c. Một số thông số kỹ thuật khác như thời gian truy xuất, công suất tiêu

tán của chip v.v…Những thông số này không có ảnh hưởng lớn đến

quá trình thiết kế và xây dựng vỉ nhớ.

Các thông số được cho trước trong việc thiết kế một vỉ nhớ bao gồm:

a. Loại chip nhớ ví dụ dùng EPROM 2764 (8Kx8) hay RAM TMS 2064

(8Kx8) v.v…

b. Dung lượng của vỉ nhớ là dung lượng vỉ nhớ phải có, ví dụ 64KB,

128KB v.v…

c. Địa chỉ đầu của vùng nhớ ví dụ vỉ nhớ có địa chỉ đầu là A0000H

chẳng hạn.

Ví dụ minh hoạ: Dùng EPROM 2764 (8Kx8bit) xây dựng vỉ nhớ có dung

lượng 32KB, địa chỉ đầu là 22000H.

Giải: Dựa trên yêu cầu của đề ra, phải thực hiện các bước sau:

1. Xác định số chip nhớ cần thiết để tạo từ nhớ cơ bản (độ dài 8 bits), có

thể tính theo công thức:

1 1 BIT PER CHIP

 1 BYTE

 1 BYTE

4 BITs PER CHIP 2 8 BITs PER CHIP 3

 1 BYTE

Hình III.8 Tạo từ nhớ 8 bit từ các chíp nhớ có độ dài từ nhớ nhỏ hơn

 32

k

n
8

= trong đó n là số chip cần để tạo được từ nhớ cơ bản

 k là độ dài từ nhớ của chip nhớ

Tín hiệu chọn vỏ CS của các chip này được nối chung với nhau, các chip này

được coi như một chip liên thông, các bit dữ liệu sẽ được định vị theo thứ tự từ

D7 ÷ D0 tương ứng với các bit từ D7 ÷ D0 của BUS dữ liệu.

2. Xác định số chip nhớ, hoặc số chip liên thông để tạo được dung lượng

nhớ theo yêu cầu. Trong trường hợp cụ thể của đề ra, cần 4 chip để tạo

được dung lượng nhớ 32KB. Tính theo công thức:

D

Q
M = trong đó Q là dung lượng của vỉ nhớ

D là dung lượng của chip nhớ hoặc dung lượng

của chip liên thông

M là số chip nhớ hoặc số chip liên thông cần

thiết

3. Xác định số dây địa chỉ cơ sở (tức là số dây địa chỉ thấp được nối trực

tiếp vào chip nhớ hoặc chip liên thông): Số dây địa chỉ m phụ thuộc vào

dung lượng nhớ của chip nhớ hoặc chip liên thông theo biểu thức sau:

 2m = D trong đó D là dung lượng của chip nhớ

 m là số dây địa chỉ cơ sở

4. Từ số chip hoặc số chip liên thông, xác định số dây địa chỉ cần thiết để

tạo các dây chọn chip riêng biệt. Tính theo công thức:

2i = M trong đó i là số dây địa chỉ cần để giải mã xác định các

tín hiệu chọn chip cho các chip nhớ hoặc chip liên

thông. M là số lượng chip hoặc số lượng chip liên

thông. Xây dựng mạch tổ hợp tạo các tín hiệu chọn

chip CSi .

5. Các dây địa chỉ còn lại được sử dụng để tạo tín hiệu xác định vùng nhớ

của vỉ nhớ trong không gian nhớ (được gán cho vỉ nhớ theo địa chỉ đầu

của vỉ nhớ theo yêu cầu).

Sơ đồ nối chân

chip nhớ ROM

2764

Sơ đồ nối chân

RAM TMS 4064

 A12 ÷ A0
D7 ÷ D0

CS

RD

WR

 A12 ÷ A0
D7 ÷ D0

CS

OE

Hình II.9 Sơ đồ nối chân chip nhớ ROM và chip nhớ RAM

 33

Sơ đồ khối vỉ nhớ như sau, các mạch tổ hợp logic xây dựng theo kiến thức

học được ở môn học Kỹ thật điện tử số.

1.5. Ram nội và các thanh ghi chức năng đặc biệt SFR của 8051:

F0 F7 F6 F5 F4 F3 F2 F1 F0

E0 E7 E6 E5 E4 E3 E2 E1 E0

D0 D7 D6 6D 6C 6B 6A 69 68

B8 - - - B

C

BB B

A

B9 B8

B0 B7 B6 B5 B4 B3 B2 B1 B0

A8 AF A

E

A

D

A

C

A

B

A

A

A9 A8

A0 A7 A6 A5 A4 A3 A2 A1 A0

99 Không định địa chỉ từng bít

98 9F 9E 9D 9C 9B 9A 99 98

A12 ÷ A0 A12 ÷ A0

.

CS0 CS1 CS3

. . .

. . .
. . .

A12 ÷ A0 D7 ÷ D0

RD

Mạch tổ hợp logic giải mã tạo các tín hiệu chọn chip

CS0, CS1, CS2 và CS3

C0 C1 C3

Mạch tổ hợp logic giải
mã chọn địa chỉ vùng

. . .

A19 ÷ A15

Hình II. 10 Sơ đồ khối vỉ nhớ 32KB từ các chip ROM 2764

Tín hiệu cho phép mạch giải mã chọn chip nhớ

Từ
BUS

địa chỉ

BUS dữ liệu

A14 A13

 34

 Các thanh ghi SFR có địa chỉ nằm giữa 80H và FFH các địa chỉ này ở trên 80H,

vì các địa chỉ từ 00 đến 7FH là địa chỉ của bộ nhớ RAM bên trong 8051. Không phải

tất cả mọi địa chỉ từ 80H đến FFH đều do SFR sử dụng, nhưng vị trí ngăn nhớ từ 80H

đến FFH chưa dùng là để dữ trữ và lập trình viên 8051 cũng không được sử dụng.

Bảng chức năng của thanh ghi chức năng đặc biệt SFR

SFR định địa chỉ từng bit (những thanh ghi cần nhớ đối với khi lập trình cơ bản C)

1.6. Bộ nhớ ngoài của họ 8051:

 Có hai bộ vi điều khiển thành viên khác của họ 8051 là 8052 và 8031.

 Bộ vi điều khiển 8052: 8052 có tất cả các đặc tính chuẩn của 8051 ngoài ra nó

có thêm 128 byte RAM và một bộ định thời nữa. Hay nói cách khác là 8052 có 256

byte RAM và 3 bộ định thời. Nó cũng có 8K byte ROM. Trên chíp thay vì 4K byte

như 8051.

Bảng so sánh các đặc tính của các thành viên họ 8051.

Đặc tính 8051 8052

ROM trên chíp 4K byte 8K byte

RAM 128 byte 256 byte

Bộ định thời 2 3

Chân vào – ra 32 32

Cổng nối tiếp 1 1

Nguồn ngắt 6 8

90 97 96 95 94 93 92 91 90

8D Không định địa chỉ từng bít

8C Không định địa chỉ từng bít

8B Không định địa chỉ từng bít

8A Không định địa chỉ từng bít

89 Không định địa chỉ từng bít

88 8F 8

E

8D 8C 8B 8A 89 88

87 Không định địa chỉ từng bít

83 Không định địa chỉ từng bít

82 Không định địa chỉ từng bít

81 Không định địa chỉ từng bít

80 87 86 8

5

84 83 82 81 80

THANH GHI CHƯC NĂNG ĐĂC BIÊT

 35

Do vậy tất cả mọi chương trình viết cho 8051 đều chạy trên 8052 nhưng điều

ngược lại là không đúng. Đặc biệt: Một nhà sản xuất chính của họ 8051 khác nữa là

Philips Corporation. Hãng này có một dải lựa chọn rộng lớn cho các bộ vi điều khiển

họ 8051. Nhiều sản phẩm của hãng đã có kèm theo các đặc tính như các bộ chuyển đổi

ADC, DAC, chân PWM, cổng I/0 mở rộng.

 36

Bài 2: Tập lệnh 89C51

❖ GIỚI THIỆU BÀI 2

Bài 2 là bài giới thiệu về tập lệnh trong họ vi điều khiển 89C51. Trên cơ sở đó

người học vận dụng vào các bài tập cụ thể để soạn thảo được một chương trình điều

khiển với những ứng dụng thực tiễn.

❖ MỤC TIÊU CỦA BÀI 2

 - Phân biệt được các kiểu định địa chỉ và dữ liệu

 - Trình bày được đặc tính và công dụng của từng lệnh trong 89c51

 - Xác định được độ lớn và thời gian thực hiện chương trình

- Kết hợp được các lệnh riêng lẻ để viết được một chương trình đúng theo yêu

cầu cho trước

- Tích cực, chủ động và sáng tạo trong học tập.

❖ PHƯƠNG PHÁP GIẢNG DẠY VÀ HỌC TẬP BÀI 2

- Đối với người dạy: sử dụng phương pháp giảng giảng dạy tích cực (diễn giảng,

vấn đáp, dạy học theo vấn đề); yêu cầu người học thực hiện câu hỏi thảo luận

của bài (cá nhân hoặc nhóm).

- Đối với người học: chủ động đọc giáo trình trước buổi học; hoàn thành đầy đủ

câu hỏi thảo luận theo cá nhân hoặc nhóm và nộp lại cho người dạy đúng thời

gian quy định.

❖ ĐIỀU KIỆN THỰC HIỆN BÀI 2

- Phòng học chuyên môn hóa/nhà xưởng: học tại xưởng thực hành vi điều

khiển – có trang bị các máy tính cài sẵn phần mềm mô phỏng.

- Trang thiết bị máy móc: Máy chiếu và các mô hình, thiết bị dạy học khác

- Học liệu, dụng cụ, nguyên vật liệu: Chương trình mô đun, giáo trình, tài liệu

tham khảo, giáo án, phim ảnh, và các KIT thực hành vi điều khiển.

- Các điều kiện khác: Không có

❖ KIỂM TRA VÀ ĐÁNH GIÁ BÀI 2

- Nội dung:

✓ Kiểm tra và đánh giá tất cả nội dung về kiến thức, kỹ năng đã nêu trong mục

tiêu của bài

✓ Năng lực tự chủ và trách nhiệm: Trong quá trình học tập, người học cần:

+ Nghiên cứu bài trước khi đến lớp

+ Chuẩn bị đầy đủ tài liệu học tập.

 37

+ Tham gia đầy đủ thời lượng môn học.

+ Nghiêm túc trong quá trình học tập.

- Phương pháp:

✓ Điểm kiểm tra thường xuyên: 1 điểm kiểm tra (hình thức - vấn đáp)

✓ Kiểm tra định kỳ lý thuyết: 1 điểm kiểm tra (hình thức – tự luận)

 38

NỘU DUNG BÀI 2

2.1. Các khái niệm cơ bản:

2.1.1. Khái niệm về lệnh trong vi điều khiển

 Bộ VĐK có tập lệnh được tối ưu hoá để ứng dụng trong các hệ thống điều

khiển, đo lường 8 bit. Để tăng khả năng truy xuất RAM nội trên các dữ liệu nhỏ, các

kiểu định địa chỉ đặc biệt đã được áp dụng. Ngoài ra tập lệnh của VĐK còn hỗ trợ các

biến 1 bit, cho phép quản lý bit trực tiếp trong các hệ logic và điều khiển bit có yêu

cầu xử lý bit. Do họ VĐK AT89/80C51 có các mã lệnh 8 bit, nên số lệnh có thể lên

đến 256 lệnh (thực tế có 255 lệnh, còn 1 lệnh chưa được định nghĩa). Trong đó có 139

lệnh 1 byte, 92 lệnh 2 byte và 24 lệnh 3 byte. Mỗi lệnh đều được đặc trưng bởi mã

lệnh (mã máy), mã gợi nhớ, số byte của lệnh và số chu kỳ máy cần để thực thi lệnh.

Các lệnh của AT89/80C51 được chia thành 5 nhóm lệnh:

- Nhóm lệnh di chuyển dữ liệu.

- Nhóm lệnh số học.

- Nhóm lệnh logic.

- Nhóm lệnh rẽ nhánh chương trình.

- Nhóm lệnh điều khiển biến logic.

2.1.2. Các ký hiệu dùng trong mô tả lệnh:

Ký hiệu ý nghĩa

<- Được thay thế bởi…

() Nội dung của…

(()) Dữ liệu được trỏ bởi…

Rrr 1 trong 8 thanh ghi (R0-R7) của các băng thanh ghi

Dddddddd Các bit dữ liệu

Aaaaaaaa Các bit địa chỉ

Bbbbbbbb địa chỉ của 1 bit

I Định địa chỉ gián tiếp thông qua R0 hoặc R1

Eeeeeeee Địa chỉ tương đối 8 bit

2.2. Các cách định địa chỉ.:

+ Rn: Thanh ghi R0-R7 của băng thanh ghi hiện hành đang được chọn để định

địa chỉ thanh ghi.

+ Direct: Địa chỉ 8 bit của ô nhớ dữ liệu nội trú, nó có thể là ô nhớ trong RAM

nội hoặc SFR. (00h-FFh)

+ @Ri: Ô nhớ 8 bit của RAM nội được định địa chỉ gián tiếp thông qua thanh

ghi R0 họăc R1.

+ Source (Src): toán hạng nguồn, có thể là Rn hoặc direct hoặc @Ri.

 39

+ Dest: Toán hạng đích, có thể là Rn hoặc direct hoặc @Ri.

+ #Data: Hằng số 8 bit chứa trong lệnh.

+ #Data16: Hằng số 16 bit chứa trong lệnh.

+ Bit: Bit được định địa chỉ trực tiếp trong RAM nội trú hoặc SFR.

+ Rel: Offset 8 bit có dấu (từ -128 đến +127). Nó được lệnh SJMP và các lệnh

nhảy có điều kiện sử dụng.

+ Addr11: địa chỉ 11 bit của bộ nhớ chương trình , được lệnh ACALL và AJMP

sử dụng.

+ Addr16: địa chỉ 16 bit của 64Kb bộ nhớ chương trình, được lệnh LCALL và

LJMP sử dụng.

2.3. Các nhóm lệnh

2.3.1. Nhóm lệnh di chuyển dữ liệu

2.3.1.1. Lệnh MOV dạng Byte:

Cú pháp câu lệnh: MOV <dest-byte>, <src-byte>

Chức năng: Sao chép nội dung của toán hạng nguồn vào toán hạng đích, nội

dung của toán hạng nguồn không thay đổi. Lệnh này không làm ảnh hưởng tới các cờ

và các thanh ghi khác.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

MOV A, Rn 1 1 11101rrr (A)<-(Rn)

MOV A, direct 2 1 11100101 aaaaaaaa (A)<-(direct)

MOV A, @Ri 1 1 1110111i (A)<-((Ri))

MOV A, #data 2 1 01110100 dddddddd (A)<-#data

MOV Rn, A 1 1 11111rrr (Rn)<-(A))

MOV Rn, direct 2 2 10101rrr aaaaaaaa (Rn)<-(direct)

MOV Rn, #data 2 1 01111rrr dddddddd (Rn)<-#data

MOV direct, A 2 1 11110101 aaaaaaaa (direct)<-(A)

MOV direct, Rn 2 2 10001rrr aaaaaaaa (direct)<-(Rn)

MOV direct, direct 3 2 10000101 aaaaaaaa

aaaaaaaa

(direct)<-(direct)

MOV direct, @Ri 2 2 1000011i aaaaaaaa (direct)<-((Ri))

MOV direct, #data 3 2 01110101 aaaaaaaa

dddddddd

(direct)<-#data

MOV @Ri, A 1 1 1111011i ((Ri))<-(A)

MOV @Ri, direct 2 2 1010011i ((Ri))<-(direct)

MOV @Ri, #data 2 1 0111011i dddddddd ((Ri))<-#data

 40

2.3.1.2 Lệnh MOV dạng Bit:

Cú pháp câu lệnh: MOV <dest-bit>, <scr-bit>

Chức năng: Chuyển bit dữ liệu ở dạng sao chép toán hạng nguồn vào toán hạng

đích. Một trong 2 toán hạng phải là cờ nhớ (C), toán hạng còn lại sẽ là bit bất kỳ được

định địa chỉ trực tiếp. Lệnh không làm ảnh hưởng tới các thanh ghi khác hoặc các cờ

khác.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

MOV C, bit 2 1 10100010 bbbbbbbb (C)<-(bit)

MOV bit, C 2 2 10010010 bbbbbbbb (bit)<-(C)

2.3.1.3. Lệnh MOV dạng Word:

 Cú pháp câu lệnh: MOV DPTR, #data16

Chức năng: Giá trị 16 bit ở toán hạng thứ 2 trực tiếp trong câu lệnh được nạp

vào thanh ghi DPTR. Hằng số 16 bit này được đặt ở byte 2 và byte 3 của lệnh. Byte 2

là byte cao được nạp cho thanh ghi DPH, byte 3 là byte thấp được nạp vào thanh ghi

DPL. Lệnh này không ảnh hưởng tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

MOV DPTR,#data16 3 2 10010000 dddddddd

dddddddd

(C)<-(bit)

2.3.1.4. Lệnh chuyển byte mã lệnh:

Cú pháp câu lệnh: MOVC A, @A + <thanh ghi cơ sở>

Chức năng: Nạp cho thanh ghi tích luỹ byte mã lệnh từ bộ nhớ chương trình.

Địa chỉ của byte được tìm nạp trong bộ nhớ là tổng nội dung của thanh ghi A 8 bit với

nội dung của thanh ghi cơ sở 16 bit (có thể là DPTR hoặc PC - thanh ghi đếm chương

trình). Trong trường hợp sau, PC được tăng để trỏ đến địa chỉ của lệnh tiếp theo

((PC)<-(PC+1)) trước khi được công với nội dung của thanh ghi A, còn thanh ghi

DPTR không bị thay đổi. Lệnh không ảnh hưởng tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

MOVC A,@A+DPTR 1 2 10010011 (A)<-((A)+(DPTR))

MOVC A,@A+PC 1 2 10000011 (A)<-((A)+(PC))

2.3.1.5. Lệnh chuyển dữ liệu ra ngoài:

Cú pháp câu lệnh: MOVX <dest-byte>, <src-byte>

 41

Chức năng: Chuyển dữ liệu giữa thanh ghi tích luỹ với bộ nhớ ngoài. Các lệnh

này được chia làm 2 loại, một loại cung cấp địa chỉ 8 bit và 1 loại cung cấp địa chỉ 16

bit.

 Nếu dữ liệu được chuyển là 8 bit, nội dung của R0 hoặc R1 trong băng thanh

ghi hiện hành sẽ cung cấp địa chỉ 8 bit đa hợp với dữ liệu trên P0. 8 bit địa chỉ này đủ

để mã hoá cho các cổng I/O mở rộng bên ngoài chip hoặc cho 1 dãy RAM kích thước

tương đối nhỏ. Với các dãy RAM có kích thước lớn hơn một chút, một vài chân của

cổng bất kỳ nào đó có thể được sử dụng để tạo ra các bit địa chỉ cao. Các chân này nên

được điều khiển bởi 1 lệnh xuất đặt trước lệnh MOVX.

 Nếu dữ liệu được chuyển là 16 bit, thì DPTR tạo ra địa chỉ 16 bit. P2 xuất ra 8

bit địa chỉ cao (nội dung của DPH), còn P0 xuất ra 8 bit địa chỉ thấp đa hợp với dữ

liệu.Thanh ghi chức năng đặc biệt P2 duy trì nội dung trước đó trong khi các bộ đệm

xuất của P2 đang phát các nội dung của DPH. Dạng này nhanh hơn và hiệu quả hơn

khi truy xuất nhiều dãy dữ liệu rất lớn (lên đến 64 Kb) do ta không cần thêm lệnh để

thiết lập các cổng khác.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

MOVX A, @Ri 1 2 11100011 (A)<-((Ri))

MOVX @Ri, A 1 2 11110011 ((Ri))<(A)

MOVX A, @DPTR 1 2 11100000 (A)<-((DPTR))

MOVX @DPTR, A 1 2 11110000 ((DPTR))<-(A)

2.3.1.6. Lệnh chuyển số liệu vào ngăn xếp:

Cú pháp câu lệnh: PUSH direct

Chức năng: Chuyển số liệu có trong câu lệnh vào ngăn xếp. Trước tiên, con trỏ

ngăn xếp (SP) được tăng lên 1, sau đó số liệu sẽ được chuyển vào đỉnh của ngăn xếp

mà địa chỉ đỉnh này được trỏ bởi SP. Ngăn xếp nằm ở RAM nội trú.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

PUSH direct 2 2 11000000 aaaaaaaa (SP)<-(SP+1)

((SP))<-(direct)

2.3.1.7. Lệnh chuyển số liệu ra khỏi ngăn xếp:

Cú pháp câu lệnh: POP direct

Chức năng: Chuyển nội dung của ngăn xếp ở RAM trong, có địa chỉ được SP

trỏ tới đến nơi có địa chỉ trực tiếp trong câu lệnh. Sau đó, con trỏ ngăn xếp (SP) được

giảm đi 1. Lệnh không ảnh hưởng tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

 42

POP direct 2 2 11010000 aaaaaaaa (direct)<-((SP))

(SP)<-(SP-1)

2.3.1.8.Hoán chuyển dữ liệu:

 Cú pháp câu lệnh: XCH A, <byte>

 Chức năng: Hoán chuyển nội dung giữa thanh ghi A với thanh ghi hoặc bộ nhớ

có địa chỉ chứa trong toán hạng thứ 2 của câu lệnh. Toán hạng thứ 2 có thể được định

địa chỉ kiểu thanh ghi, thanh ghi trực tiếp hoặc thanh ghi gián tiếp.

 Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

XCH A, Rn 1 1 11001rrr (A)<-->(Rn)

XCH A, direct 2 1 11000101 aaaaaaaa (A) <-->(direct)

XCH A, @Ri 1 1 1100011i (A) <-->((Ri))

2.3.1.9.Hoán chuyển 4 bit thấp:

 Cú pháp câu lệnh: XCHD A,@Ri

 Chức năng: Hoán chuyển 4 bit thấp nội dung trong thanh ghi A với ô nhớ của

RAM bên trong, có địa chỉ được định gián tiếp qua thanh ghi được chỉ ra trong lệnh.

Lệnh này không ảnh hưởng tới trạng thái các cờ và nửa cao của các thanh ghi trong

lệnh.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

XCHD A, @Ri 1 1 1101011i (A3-A0)<-->((Ri3-Ri0))

2.3.2. Nhóm lệnh tính toán số học.

2.3.2.1. Lệnh thực hiện phép cộng.

Cú pháp của câu lệnh: ADD A, <scr-byte>

Chức năng: Cộng giá trị 1 byte ở địa chỉ được chỉ ra ở câu lệnh với nội dung

trong thanh ghi tích luỹ, kết quả được lưu vào thanh ghi tích luỹ. Nếu có nhớ từ bit số

7 hoặc bit số 3 thì cờ nhớ hoặc cờ nhớ phụ được thiết lập, ngược lại các cờ nêu trên

được xoá. Khi cộng 2 số nguyên không dấu mà bị tràn thì cờ nhớ cũng được thiết lập

để cho ta biết phép toán bị tràn. Trường hợp thực hiện lệnh ADD mà có nhớ từ bit số 6

nhưng không có nhớ từ bit số 7, hoặc có nhớ từ bit số 7 nhưng không có nhớ từ bit số

6 thì cờ tràn sẽ được thiết lập, ngược lại thì OV bị xoá. Khi cộng 2 số nguyên có dấu

mà tổng là 1 số âm thì OV được thiết lập.

 43

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

ADD A, Rn 1 1 00101rrr (A)<- (A) + (Rn)

ADD A, direct 2 1 00100101 aaaaaaaa (A)<- (A) + (direct)

ADD A, @Ri 1 1 0010011i (A)<- (A) + ((Ri))

ADD A, #data 2 1 00100100 dddddddd (A)<- (A) + #data

2.3.2.2. Lệnh cộng có nhớ.

Cú pháp của câu lệnh: ADDC A, <scr-byte>

Chức năng: Cộng đồng thời nội dung của 1 byte ở địa chỉ được chỉ ra trong câu

lệnh với nội dung chứa trong thanh ghi tích luỹ và cờ nhớ. Nếu có nhớ từ bit số 7 hoặc

số 3 thì cờ nhớ hoặc cờ nhớ phụ được thiết lập bằng 1, ngược lại các cờ nêu trên bị

xoá. Khi cộng các số nguyên không dấu mà bị tràn thì cờ nhớ cũng được thiết lập.

Trường hợp thực hiện lệnh ADDC mà có nhớ từ bit số 6 nhưng không nhớ từ bit số 7,

hoặc có nhớ từ bit só 7 nhưng không nhớ từ bit số 6 thì cờ tràn sẽ được thiết lập,

ngược lại cờ này bị xoá. Khi cộng các số nguyên có dấu mà tổng là 1 số âm thì OV

được thiết lập.

Câu lệnh Số byte Số chu

kỳ

Mã lệnh Hoạt động

ADDC A, Rn 1 1 00110rrr (A)<- (A) + (C) + (Rn)

ADDC A, direct 2 1 00110101

aaaaaaaa

(A)<- (A) + (C) + (direct)

ADDC A, @Ri 1 1 0011011i (A)<- (A) + (C) + ((Ri))

ADDC A, #data 2 1 00110100

dddddddd

(A)<- (A) + (C) + #data

2.3.2.3. Lệnh trừ có mượn.

Cú pháp của câu lệnh: SUBB A, <scr-byte>

Chức năng: Trừ thanh ghi tích luỹ cho toán hạng thứ 2 và cờ nhớ, kết quả được

lưu vào thanh ghi tích luỹ. Cờ nhớ được đặt bằng 1 nếu có số mượn được cần đến cho

bit số 7, ngược lại thì cờ nhớ bị xoá. Cờ nhớ phụ được thiết lập nếu có nhớ cho bit 3.

Trường hợp thực hiện lệnh SUBB mà có số mượn được cần đến cho bit 7(không phải

cho bit 6), hoặc cho bit 6 (không phải cho bit 7) thì cờ tràn sẽ được thiết lập, ngược lại

thì OV bị xoá. Khi trừ các số nguyên có dấu mà kết quả là 1 số âm thì OV được thiết lập.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

SUBB A, Rn 1 1 10011rrr (A)<- (A) - (C) - (Rn)

SUBB A, direct 2 1 10010101 (A)<- (A) - (C) - (direct)

 44

aaaaaaaa

SUBB A, @Ri 1 1 1001011i (A)<- (A) - (C) - ((Ri))

SUBB A, #data 2 1 10010100

dddddddd

(A)<- (A) - (C) - #data

2.3.2.4. Lệnh tăng lên 1 đơn vị.

Cú pháp của câu lệnh: INC <byte>

Chức năng: Tăng giá trị của byte trong câu lệnh lên 1 đơn vị. Nếu giá trị ban

đầu của byte là 0FFh, thì sau khi thực hiện lệnh INC nội dung của byte sẽ là 00h. Lệnh

này không làm ảnh hưởng tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

INC A 1 1 00000100 (A)<- (A) + 1

INC Rn 1 1 00001rrr (Rn)<- (Rn) + 1

INC direct 2 1 00000101

aaaaaaaa

(direct)<- (direct) + 1

INC @Ri 1 1 0000011i ((Ri))<- ((Ri)) + 1

2.3.2.5. Lệnh giảm 1 đơn vị.

Cú pháp của câu lệnh: DEC <byte>

Chức năng: Giảm giá trị của byte trong câu lệnh xuống 1 đơn vị. Nếu giá trị

ban đầu của byte là 00h, thì sau khi thực hiện lệnh DEC nội dung của byte sẽ là 0FFh.

Lệnh này không làm ảnh hưởng tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

DEC A 1 1 00010100 (A)<- (A) – 1

DEC Rn 1 1 00011rrr (Rn)<- (Rn) – 1

DEC direct 2 1 00010101

aaaaaaaa

(direct)<- (direct) – 1

DEC @Ri 1 1 0001011i ((Ri))<- ((Ri)) – 1

2.3.2.6. Lệnh tăng con trỏ dữ liệu.

Cú pháp của câu lệnh: INC DPTR

Chức năng: Tăng con trỏ dữ liệu lên 1 đơn vị. Khi byte thấp của con trỏ dữ liệu

bị tràn, thì byte cao của con trỏ dữ liệu tăng lên 1 đơn vị. Lệnh này không ảnh hưởng

tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

INC DPTR 1 2 10100011 (DPTR)<- (DPTR) + 1

 45

2.3.2.7. Lệnh thực hiện phép nhân.

Cú pháp của câu lệnh: MUL AB

Chức năng: Nhân các số nguyên không dấu 8 bit trong thanh ghi tích luỹ với

thanh ghi B. Byte thấp của kết quả 16 bit được lưu trong thanh ghi tích luỹ, còn byte

cao được lưu trong thanh ghi B. Nếu kết quả lớn hơn 0FFh thì cờ tràn được thiết lập,

cờ nhớ luôn bị xoá.

Câu lệnh Số byte Số chu kỳ Mã lệnh Hoạt động

MUL AB 1 4 10100100 (B)<- byte cao của (A)x(B)

(A)<- byte thấp của (A)x(B)

2.3.2.8. Lệnh thực hiện phép chia.

Cú pháp của câu lệnh: DIV AB

Chức năng: Chia số nguyên không dấu 8 bit trong thanh ghi tích luỹ cho số

nguyên không dấu 8 bit trong thanh ghi B. Thương số được lưu trong thanh ghi tích

luỹ, còn số dư được lưu trong thanh ghi B. Cờ tràn và cờ nhớ bị xoá.

Câu lệnh Số byte Số chu kỳ Mã lệnh Hoạt động

DIV AB 1 4 10000100 (A)<- thương của (A)/(B)

(B)<- số dư của (A)/(B)

2.3.2.9. Hiệu chỉnh số thập phân.

Cú pháp của câu lệnh: DA A

Chức năng: Hiệu chỉnh thập phân nội dung 8 bit trong thanh ghi A sau khi thực

hiện phép cộng.

Nếu 4 bit thấp trong thanh ghi A có giá trị lớn hơn 9 hoặc cờ nhớ phụ được

thiết lập thì phải cộng thêm 6 vào thanh ghi A để cho chữ số thập phân được chính

xác. Phép cộng này sẽ đặt cờ nhớ nếu số nhớ từ 4 bit thấp chuyển đến tất cả 4 bit cao,

ngược lại phép toán không xoá cờ nhớ.

 Nếu 4 bit cao trong thanh ghi A có giá trị lớn hơn 9 hoặc cờ nhớ (CF) được

thiết lập, thì cũng phải cộng thêm 6 vào thanh ghi A.

Câu lệnh Số byte Số chu kỳ Mã lệnh

DA A 1 1 11010100

Hoạt động:

- Nếu [[(A3-A0)>9]hoặc[(AC)=1]] thì (A3-A0)<-(A3-A0) + 6

- Nếu [[(A7-A4)>9]hoặc[(C)=1]] thì (A7-A4)<-(A7-A4) + 6

2.3.3. Nhóm lệnh tính toán logic.

2.3.3.1. Lệnh AND cho các biến 1 byte.

Cú pháp câu lệnh: ANL <dest-byte>, <src-byte>

 46

Chức năng: Thực hiện phép toán logic AND theo mức bit giữa các biến dài 1

byte đã cho, kết quả được lưu vào toán hạng đích. Toán hạng nguồn cho phép 6 chế độ

địa chỉ hoá. Khi toán hạng đích là thanh ghi tích luỹ thì toán hạng nguồn có thể là

thanh ghi, trực tiếp, thanh ghi-gián tiếp hoặc tức thời. Khi toán hạng đích là địa chỉ

trực tiếp thì toán hạng nguồn có thể là thanh ghi tích luỹ hoặc dữ liệu tức thời. Lệnh

này không làm ảnh hưởng tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

ANL A, Rn 1 1 01011rrr (A)<-(A) AND (Rn)

ANL A, direct 2 1 01010101 aaaaaaaa (A)<-(A) AND (dir.)

ANL A, @Ri 1 1 0101011i (A)<- (A) AND ((Ri))

ANL A, #data 2 1 01010100 dddddddd (A)<- (A) AND #data

ANL direct, A 2 1 01010010 aaaaaaaa (dir.)<-(dir.)AND (A)

ANL direct, #data 3 2 01010011 aaaaaaaa

dddddddd

(dir.)<(dir.)AND#data

2.3.3.2. Lệnh AND cho các biến 1 bit

Cú pháp câu lệnh: ANL C, <src-bit>

Chức năng: Thực hiện phép tính logic AND cho các biến mức bit. Nếu giá trị

logic của toán hạng nguồn bằng 0, thì cờ nhớ bị xoá. Dấu “/” đứng trước 1 toán hạng

cho biết bit nguồn được lấy bù trước khi thực hiện AND với cờ nhớ nhưng giá trị của

bit nguồn không bị thay đổi bởi thao tác lấy bù. Lệnh này không làm ảnh hưởng tới

trạng thái các cờ khác. Toán hạng nguồn chỉ được sử dụng kiểu định địa chỉ trực tiếp.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

ANL C, bit 2 2 10000010 bbbbbbbbb (C)<-(C) AND (bit)

ANL C, /bit 2 2 10110000 bbbbbbbbb (C)<-(C) AND NOT (bit)

2.3.3.3. Lệnh OR cho các biến 1 byte

Cú pháp câu lệnh: ORL <dest-byte>, <src-byte>

Chức năng: Thực hiện phép toán logic OR theo mức bit giữa các biến dài 1

byte đã cho, kết quả được lưu vào toán hạng đích. Toán hạng nguồn cho phép 6 chế độ

địa chỉ hoá. Khi toán hạng đích là thanh ghi tích luỹ thì toán hạng nguồn có thể là

thanh ghi, trực tiếp, thanh ghi-gián tiếp hoặc tức thời. Khi toán hạng đích là địa chỉ

trực tiếp thì toán hạng nguồn có thể là thanh ghi tích luỹ hoặc dữ liệu tức thời. Lệnh

này không làm ảnh hưởng tới trạng thái các cờ.

 47

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

ORL A, Rn 1 1 01001rrr (A)<-(A) OR (Rn)

ORL A, direct 2 1 01000101 aaaaaaaa (A)<-(A) OR (dir.)

ORL A, @Ri 1 1 0100011i (A)<- (A) OR ((Ri))

ORL A, #data 2 1 01000100 dddddddd (A)<- (A) OR #data

ORL direct, A 2 1 01000010 aaaaaaaa (dir.)<-(dir.) OR (A)

ORL direct, #data 3 2 01000011 aaaaaaaa

dddddddd

(dir.)<(dir.) OR #data

2.3.3.4. Lệnh OR cho các biến 1 bit

Cú pháp câu lệnh: ORL C, <src-bit>

Chức năng: Thực hiện phép tính logic OR cho các biến mức bit. Nếu giá trị

logic của toán hạng nguồn bằng 1, thì cờ nhớ được thiết lập. Dấu “/” đứng trước 1 toán

hạng cho biết bit nguồn được lấy bù trước khi thực hiện OR với cờ nhớ nhưng giá trị

của bit nguồn không bị thay đổi bởi thao tác lấy bù. Lệnh này không làm ảnh hưởng

tới trạng thái các cờ khác.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

ORL C, bit 2 2 01110010 bbbbbbbbb (C)<-(C) OR (bit)

ORL C, /bit 2 2 10100000 bbbbbbbbb (C)<-(C) OR NOT (bit)

2.3.3.5. Lệnh X-OR cho các biến 1 byte

Cú pháp câu lệnh: XRL <dest-byte>, <src-byte>

Chức năng: Thực hiện phép toán logic X-OR theo mức bit giữa các biến dài 1

byte đã cho, kết quả được lưu vào toán hạng đích. Toán hạng nguồn cho phép 6 chế độ

địa chỉ hoá. Khi toán hạng đích là thanh ghi tích luỹ thì toán hạng nguồn có thể là

thanh ghi, trực tiếp, thanh ghi-gián tiếp hoặc tức thời. Khi toán hạng đích là địa chỉ

trực tiếp thì toán hạng nguồn có thể là thanh ghi tích luỹ hoặc dữ liệu tức thời. Lệnh

này không làm ảnh hưởng tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

XRL A, Rn 1 1 01101rrr (A)<-(A) XOR (Rn)

XRL A, direct 2 1 01100101 aaaaaaaa (A)<-(A) XOR (dir.)

XRL A, @Ri 1 1 0110011i (A)<- (A) XOR ((Ri))

 48

XRL A, #data 2 1 01100100 dddddddd (A)<- (A) XOR #data

XRL direct, A 2 1 01100010 aaaaaaaa (dir.)<-(dir.)XOR (A)

XRL direct, #data 3 2 01100011 aaaaaaaa

dddddddd

(dir.)<(dir.) XOR #data

2.3.3.6. Lệnh dịch trái thanh ghi A

Cú pháp câu lệnh: RL A

Chức năng: 8 bit trong thanh ghi A được dịch trái 1 bit. Bit 7 được quay đến vị

trí của bit 0. Các cờ không bị ảnh hưởng.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

RL A 1 1 00100011 (An+1) <- (An), với n = 0…6

(A0) <- (A7)

2.3.3.7. Lệnh dịch trái thanh ghi A cùng với cờ nhớ

Cú pháp câu lệnh: RLC A

Chức năng: 8 bit trong thanh ghi A và cờ nhớ cùng được dịch trái 1 bit. Bit 7

được chuyển đến cờ nhớ và trạng thái ban đầu của cờ nhớ được đưa về bit 0. Các cờ

khác không bị ảnh hưởng.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

RLC A 1 1 00110011 (An+1) <- (An), với n = 0…6

(A0) <- (C)

(C) <- (A7)

 2.3.3.8. Lệnh dịch phải thanh ghi A.

Cú pháp câu lệnh: RR A

Chức năng: 8 bit trong thanh ghi A được dịch sang phải 1 bit. Bit 0 được quay

đến vị trí của bit 7. Các cờ không bị ảnh hưởng.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

RR A 1 1 00000011 (An) <- (An+1), với n = 0…6

(A7) <- (A0)

2.3.3.9. Lệnh dịch phải thanh ghi A cùng với cờ nhớ

Cú pháp câu lệnh: RRC A

Chức năng: 8 bit trong thanh ghi A và cờ nhớ cùng được dịch phải 1 bit. Bit 0

được chuyển đến cờ nhớ và trạng thái ban đầu của cờ nhớ được đưa về bit 7. Các cờ

khác không bị ảnh hưởng.

 49

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

RRC A 1 1 00010011 (An) <- (An+1), với n = 0…6

(A7) <- (C)

(C) <- (A0)

2.3.3.10. Lệnh tráo đổi nội dung hai nửa byte của A

Cú pháp câu lệnh: SWAP A

Chức năng: Tráo đổi nội dung 2 nửa thấp và cao (mỗi nửa 4 bit) của thanh ghi

A (các bit từ 0 đến 3 và các bit từ 4 đến 7). Thao tác này còn được hiểu là quay thanh

ghi A 4 bit. Các cờ không bị ảnh hưởng.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

SWAP A 1 1 11000100 (A3-A0) <- (A7-A4)

2.3.4. Nhóm lệnh rẽ nhánh chương trình.

2.134.1. Lệnh gọi tuyệt đối.

Cú pháp câu lệnh: ACALL addr11

Chức năng: Gọi không điều kiện một chương trình con đặt tại địa chỉ được chỉ

ra trong câu lệnh. Lệnh này tăng bộ đếm chương trình thêm 2 đơn vị để PC chứa địa

chỉ của lệnh kế lệnh ACALL, sau đó cất nội dung 16 bit của PC vào ngăn xếp (byte

thấp cất trước) và tăng con trỏ ngăn xếp lên 2 đơn vị. Địa chỉ đích sẽ đựơc hình thành

bằng cách ghép 5 bit cao của thanh ghi PC (sau khi được tăng), 3 bit cao của byte mã

lệnh và byte thứ 2 của lệnh. Do đó chương trình con được gọi phải nằm trong đoạn 2

Kbyte của bộ nhớ chương trình chí it phải chứa lệnh đầu tiên của chương trình con

này. Lệnh không làm ảnh hưởng tới các cờ.

 Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

ACALL addr11 2 2 aaa10001

aaaaaaaa

(PC) <- (PC) + 2

(SP) <- (SP) + 1

((SP)) <- (PC7-PC0)

(SP) <- (SP) + 1

((SP)) <- (PC15-PC8)

(PC10-PC0) <- (page address)

2.3.4.2. Lệnh gọi dài.

Cú pháp câu lệnh: LCALL addr16

Chức năng: Gọi một chương trình con đặt tại địa chỉ được chỉ ra trong câu

lệnh. Lệnh này tăng bộ đếm chương trình thêm 3 đơn vị để PC chứa địa chỉ của lệnh

kế lệnh LCALL, sau đó cất nội dung 16 bit của PC vào ngăn xếp (byte thấp cất trước)

 50

và tăng con trỏ ngăn xếp lên 2 đơn vị. Tiếp theo nó sẽ chuyển byte thứ 2 và byte thứ 3

trong câu lệnh LCALL vào byte cao và byte thấp của PC. Việc thực thi chương trình

tiếp tục với lệnh ở địa chỉ này. Như vậy chương trình con có thể bắt đầu bằng bất cứ

nơi nào trong không gian bộ nhớ chương trình 64 Kbyte. Lệnh không làm ảnh hưởng

tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

LCALL addr16 3 2 00010010 aaaaaaaa

aaaaaaaa

(PC) <- (PC) + 3

(SP) <- (SP) + 1

((SP)) <- (PC7-PC0)

(SP) <- (SP) + 1

((SP)) <- (PC15-PC8)

(PC) <- addr15-addr0

2.3.4.3. Lệnh quay trở lại từ chương trình con.

Cú pháp câu lệnh: RET

Chức năng: Trở về từ chương trình con. Lệnh này được thực hiện sau khi thực

hiện xong lệnh ACALL hoặc LCALL. RET lấy lại byte cao và byte thấp của PC từ

ngăn xếp, giảm SP đI 2 đơn vị. Chương trình tiếp tục được thực hiện với lệnh có địa

chỉ ở trong PC. Các cờ không bị ảnh hưởng.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

RET 1 2 00100010 (PC15-PC8) <- ((SP))

(SP) <- (SP) - 1

(PC7-PC0) <- ((SP))

(SP) <- (SP) – 1

2.3.4.4. Lệnh quay trở lại từ ngắt.

Cú pháp câu lệnh: RETI

Chức năng: Trở về từ chương trình con. RETI lấy lại byte cao và byte thấp của

PC từ ngăn xếp, phục hồi logic ngắt để có thể nhận các ngắt khác có cùng mức ưu tiên

ngắt với ngắt được xử lý, sau đó giảm SP đi 2 đơn vị. Chương trình tiếp tục được thực

hiện với lệnh trước khi xử lý ngắt với địa chỉ ở trong PC. Các cờ không bị ảnh hưởng.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

RETI 1 2 00110010 (PC15-PC8) <- ((SP))

(SP) <- (SP) - 1

(PC7-PC0) <- ((SP))

(SP) <- (SP) – 1

 51

2.3.4.5. Lệnh nhảy gián tiếp.

Cú pháp câu lệnh: JMP @A+DPTR

Chức năng: Cộng giá trị không dấu 8 bit của thanh ghi A với con trỏ dữ liệu 16

bit và nạp kết quả vào bộ đếm chương trình, kết quả này chính là địa chỉ để nạp lệnh

kế tiếp. Việc cộng 16 bit được thực hiện: Số nhớ từ 8 bit thấp được truyền đến tất cả

các bit cao. Cả 2, thanh ghi A và DPTR đều không bị thay đổi. Lệnh này không ảnh

hưởng tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

JMP @A+DPTR 1 2 01110011 (PC)<-(A)+(DPTR)

2.3.4.6. Lệnh nhảy nếu 1 bit được thiết lập.

Cú pháp câu lệnh: JB bit, rel

Chức năng: Nếu bit đã cho có giá trị bằng 1 thì nó nhảy tới địa chỉ đã xác định

trong câu lệnh, ngược lại nó sẽ tiếp tục thực hiện lệnh tiếp theo. Địa chỉ đích được tính

bằng cách cộng thêm độ lệch có dấu (tương đối) trong byte thứ 3 của lệnh với nội

dung trong PC (sau khi được tăng đến địa chỉ của byte đầu tiên của lệnh kế tiếp). Bit

được kiểm tra không bị thay đổi, lệnh không ảnh hưởng tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

JB bit, rel 3 2 00100000 bbbbbbbbb

eeeeeeee

(PC)<-(PC)+3

Nếu (bit)=1 thì:

 (PC)<-(PC) + rel

2.3.4.7. Lệnh nhảy nếu 1 bit không được thiết lập.

Cú pháp câu lệnh: JNB bit, rel

Chức năng: Nếu bit đã cho có giá trị bằng 0 thì nó nhảy tới địa chỉ đã xác định

trong câu lệnh, ngược lại nó sẽ tiếp tục thực hiện lệnh tiếp theo. Địa chỉ đích được tính

bằng cách cộng thêm độ lệch có dấu (tương đối) trong byte thứ 3 của lệnh với nội

dung trong PC (sau khi được tăng đến địa chỉ của byte đầu tiên của lệnh kế tiếp). Bit

được kiểm tra không bị thay đổi, lệnh không ảnh hưởng tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

JNB bit, rel 3 2 00110000 bbbbbbbbb

eeeeeeee

(PC)<-(PC)+3

Nếu (bit)=0 thì:

 (PC)<-(PC) + rel

2.3.4.8. Lệnh nhảy nếu 1 bit được thiết lập và xoá bit đó.

Cú pháp câu lệnh: JBC bit, rel

 52

Chức năng: Nếu bit đã cho có giá trị bằng 1 thì nó nhảy tới địa chỉ đã xác định

trong câu lệnh và xoá bit này, ngược lại nó sẽ tiếp tục thực hiện lệnh tiếp theo. Địa chỉ

đích được tính bằng cách cộng thêm độ lệch có dấu (tương đối) trong byte thứ 3 của

lệnh với nội dung trong PC (sau khi được tăng đến địa chỉ của byte đầu tiên của lệnh

kế tiếp). Lệnh không ảnh hưởng tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

JBC bit, rel 3 2 00010000 bbbbbbbbb

eeeeeeee

(PC)<-(PC)+3

Nếu (bit)=1 thì:

 (bit)<- 0

 (PC)<- (PC) + rel

2.3.4.9. Lệnh nhảy nếu cờ nhớ được thiết lập.

Cú pháp câu lệnh: JC rel

Chức năng: Nếu cờ CF có giá trị bằng 1 thì nó nhảy tới địa chỉ đã xác định

trong câu lệnh, ngược lại nó sẽ tiếp tục thực hiện lệnh tiếp theo. Địa chỉ đích được tính

bằng cách cộng thêm độ lệch có dấu (tương đối) trong byte thứ 2 của lệnh với nội

dung trong PC (sau khi được tăng bởi 2). Lệnh không ảnh hưởng tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

JC rel 2 2 01000000 eeeeeeee (PC)<-(PC)+2

Nếu (C)=1 thì:

 (PC)<- (PC) + rel

2.3.4.10. Lệnh nhảy nếu cờ nhớ không được thiết lập.

Cú pháp câu lệnh: JNC rel

Chức năng: Nếu cờ CF có giá trị bằng 0 thì nó nhảy tới địa chỉ đã xác định

trong câu lệnh, ngược lại nó sẽ tiếp tục thực hiện lệnh tiếp theo. Địa chỉ đích được tính

bằng cách cộng thêm độ lệch có dấu (tương đối) trong byte thứ 2 của lệnh với nội

dung trong PC (sau khi được tăng bởi 2). Lệnh không ảnh hưởng tới các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

JNC rel 2 2 01010000 eeeeeeee (PC)<-(PC)+2

Nếu (C)=0 thì:

 (PC)<- (PC) + rel

 53

2.3.4.11. Lệnh nhảy nếu thanh ghi A bằng 0.

Cú pháp câu lệnh: JZ rel

Chức năng: Nếu tất cả các bit của thanh ghi A có giá trị bằng 0 thì nó nhảy tới

địa chỉ đã xác định trong câu lệnh, ngược lại nó sẽ tiếp tục thực hiện lệnh tiếp theo.

Địa chỉ đích được tính bằng cách cộng thêm độ lệch có dấu (tương đối) trong byte thứ

2 của lệnh với nội dung trong PC (sau khi được tăng bởi 2). Lệnh không ảnh hưởng tới

các cờ. Nội dung thanh ghi A không bị thay đổi.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

JZ rel 2 2 01100000 eeeeeeee (PC)<-(PC)+2

Nếu (A)=0 thì:

 (PC)<- (PC) + rel

2.3.4.12. Lệnh nhảy nếu thanh ghi A khác 0.

Cú pháp câu lệnh: JNZ rel

Chức năng: Nếu có 1 hoặc nhiều bit của thanh ghi A có giá trị bằng 1 thì nó

nhảy tới địa chỉ đã xác định trong câu lệnh, ngược lại nó sẽ tiếp tục thực hiện lệnh tiếp

theo. Địa chỉ đích được tính bằng cách cộng thêm độ lệch có dấu (tương đối) trong

byte thứ 2 của lệnh với nội dung trong PC (sau khi được tăng bởi 2). Lệnh không ảnh

hưởng tới các cờ. Nội dung thanh ghi A không bị thay đổi.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

JNZ rel 2 2 01110000 eeeeeeee (PC)<-(PC)+2

Nếu (A) < > 0 thì:

 (PC)<- (PC) + rel

2.3.4.13. Lệnh nhảy khi so sánh 2 toán hạng.

Cú pháp câu lệnh: CJNE <dest-byte>, <src-byte>, rel

Chức năng: So sánh giá trị của 2 toán hạng đầu tiên, nếu 2 toán hạng không

bằng nhau thì chương trình được rẽ nhánh. Địa chỉ đích rẽ nhánh được tính bằng cách

cộng độ lệch tương đối (có dấu) trong byte sau cùng của lệnh với nội dung của PC (sau

khi nội dung của PC được tăng đến địa chỉ bắt đầu của lệnh kế tiếp CJNZ). Cờ nhớ

(CF) sẽ được thiết lập nếu như giá trị nguyên không dấu của toán hạng đích nhỏ hơn

giá trị nguyên không dấu của toán hạng nguồn, ngược lại thì cờ này bị xoá. Lệnh này

không làm thay đổi giá trị của các toán hạng

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

CJNE A, direct, rel

3 2 10110101

aaaaaaaa

eeeeeeee

(PC)<-(PC)+3

Nếu (A) < > (dir.) thì:

(PC)<- (PC) + offset

 54

 Nếu (A) < (dir.) thì:

 (C) <- 1, ngược lại:

 (C) <- 0

CJNE A, #data, rel

3 2 10110100

dddddddd

eeeeeeee

(PC)<-(PC)+3

Nếu (A) < > #data thì:

 (PC)<- (PC) + offset

 Nếu (A) < #data thì:

 (C) <- 1, ngược lại:

 (C) <- 0

CJNE Rn, #data, rel

3 2 10111rrr

dddddddd

eeeeeeee

(PC)<-(PC)+3

Nếu (Rn)< >#data thì:

 (PC)<- (PC) + offset

 Nếu (Rn) < #data thì:

 (C) <- 1, ngược lại:

 (C) <- 0

CJNE @Ri, #data, rel

3 2 1011011i

dddddddd

eeeeeeee

(PC)<-(PC)+3

Nếu ((Ri))< >#data thì:

 (PC)<- (PC) + offset

 Nếu ((Ri)) < #data thì:

 (C) <- 1, ngược lại:

 (C) <- 0

2.3.4.14. Lệnh giảm và nhảy.

Cú pháp câu lệnh: DJNZ <byte>, <rel-address>

Chức năng: Giảm ô nhớ đi 1 và nhảy tới địa chỉ cho bởi toán hạng thứ 2 nếu

như kết quả khác 0. Nếu kết quả ban đầu là 00h thì nó chuyển qua 0FFh. Địa chỉ đích

được tính bằng cách cộng thêm độ lệch có dấu trong byte lệnh cuối cùng với nội dung

của PC (sau khi tăng PC tới byte đầu tiên của lệnh tiếp theo). Ngăn nhớ được giảm giá

trị có thể là 1 thanh ghi hoặc 1 byte địa chỉ trực tiếp. Lệnh này không ảnh hưởng tới

trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

DJNZ Rn, rel

2 2 11011rrr

eeeeeeee

(PC)<-(PC)+2

(Rn)<- (Rn) - 1

 Nếu (Rn) < > 0 thì:

 (PC) <- (PC) + rel

DJNZ Direct, rel

3 2 11010101

aaaaaaaa

eeeeeeee

(PC)<-(PC)+2

(dir.)<- (dir.) - 1

 Nếu (dir.) < > 0 thì:

 (PC) <- (PC) + rel

2.3.4.15. Lệnh tạm ngừng hoạt động.

Cú pháp câu lệnh: NOP

 55

Chức năng: Tạm ngừng hoạt động khi có lệnh này và chương trình sẽ tiếp tục

được thực hiện ở lệnh tiếp theo. Lệnh này không ảnh hưởng tới trạng thái các thanh

ghi và các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

NOP 1 1 00000000 (PC)<-(PC)+2

 2.3.5. Nhóm lệnh điều khiển biến logic.

 2.3.5.1. Lệnh xoá bit

Cú pháp câu lệnh: CLR bit

Chức năng: Xoá bit được chỉ ra trong câu lệnh về 0. Lệnh này có thể thao tác

trên cờ nhớ, hoặc trên 1 bit bất kỳ được định địa chỉ trực tiếp. Lệnh không làm ảnh

hưởng tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

CLR C 1 1 11000011 (C) <- 0

CLR bit 2 1 11000010 bbbbbbbb (bit) <- 0

2.3.5.2. Lệnh xoá thanh ghi tích luỹ

Cú pháp câu lệnh: CLR A

Chức năng: Xoá tất cả các bit của thanh ghi tích luỹ về 0. Các cờ không bị ảnh

hưởng.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

CLR A 1 1 11100100 (A) <- 0

2.3.5.3. Lệnh thiết lập bit

Cú pháp câu lệnh: SETB bit

Chức năng: Thiết lập bit được chỉ ra trong câu lệnh lên mức logic 1. Lệnh này

có thể thao tác trên cờ nhớ, hoặc trên 1 bit bất kỳ được định địa chỉ trực tiếp. Lệnh

không làm ảnh hưởng tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

SETB C 1 1 11010011 (C) <- 1

SETB bit 2 1 11010010 bbbbbbbb (bit) <- 1

 56

2.3.5.4. Lệnh lấy bù của bit

Cú pháp câu lệnh: CPL <bit>

Chức năng: Lấy bù bit được chỉ ra trong câu lệnh. Một bit có giá trị 1 được đổi

thành 0 và ngược lại. Lệnh này có thể thao tác trên cờ nhớ, hoặc trên 1 bit bất kỳ được

định địa chỉ trực tiếp. Lệnh không làm ảnh hưởng tới trạng tháI các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

CPL C 1 1 10110011 (C) <- NOT (C)

CPL bit 2 1 10110010 bbbbbbbb (bit) <- NOT (bit)

2.3.5.5. Lệnh lấy bù của thanh ghi tích luỹ

Cú pháp câu lệnh: CPL A

Chức năng: Lấy bù tất cả các bit của thanh ghi A. Lệnh không làm ảnh hưởng

tới trạng thái các cờ.

Câu lệnh Số

byte

Số chu

kỳ

Mã lệnh Hoạt động

CPL A 1 1 11110100 (A) <- NOT (A)

2.4. Một số bài tập luyện tập:

2.4.1. Trình tự thực hiện một mạch điều khiển

Bài tập mẫu: Viết 1 mạch điều khiển đèn led đơn theo mẫu. Khi viết xong 1 dòng lệnh

nên giải thích dòng lệnh đó làm gì. Việc thực hiện như sau:

1. Soạn thảo chương trình

 57

Ta nên chia chương trình như màn hình trên. Với 1 file nhỏ thì nó hơi rườm rà. Nhưng

với 1 file lớn khoảng 1000 dòng code thì nó lại rất rõ ràng. Nên tạo 1 file mẫu rồi nhớ

vào 1 file text để ở đâu đó mỗi lần dùng chỉ việc copy qua chứ không nên mỗi lần tạo

một file như vậy lại phản tác dụng. Phía trên là phần bộ tiền xử lí và khai báo biến.

Tiếp theo là viết hàm trễ.

 58

Tiếp theo là viết hàm main. Như sau:

Nhấn tổ hợp phím Ctrl+S. Hoặc chọn File → Save để nhớ file vừa soạn thảo.

 59

2. Dịch chương trình:

Soạn thảo song nhấn tổ hợp phím Ctrl +S để lưu. Sau đó biên dịch chương trình bằng

cách ấn phím F7 hoặc chọn Build target là biểu tượng ngay trên cửa sổ workspace như

trên hình:

Được cửa sổ như sau:

Trong cửa sổ Output Window ngay phía trên dòng chữ này có các dòng chữ

Compiling …

Linking…

Program Size: data =17.0 code =96

… 0 error , 0 Warning .

 60

Nếu không có các dòng trên là mạch đã lỗi, khi đó, ta kiểm tra xem soạn thảo đúng

chưa. Sau khi sửa lỗi thì biên dịch lại. Sau khi dịch lại được hình sau:

3. Chạy mô phỏng và sửa lỗi.

Trước khi mô phỏng chúng ta khởi tạo như sau. Vào Option for target 1.

 61

Được bảng sau. Nhập tần số thạch anh là 12 Mhz đúng với tần số thạch

anh.

Chọn OK. Để mô phỏng nhấn tổ hợp phím Ctrl + F5. Hoặc nhấn vào biểu tượng có

chữ D mầu đỏ trong menu view trên thanh công cụ. Được cửa sổ sau:

 62

Trong menu Peripherals (các thiết bị ngoại vi) chọn IO port, Port 1. Được như

sau:

Xuất hiện 1 cửa sổ nhỏ Parallel Port 1 đó là cửa sổ mô phỏng của AT89C51. Dấu lựa

chọn tương đương chân ở mức cao (5V), dấu không lựa chọn tương đương chân ở mức

thấp (0V). Trong menu peripherals còn các ngoại vi khác như timer , interrupt, serial.

Để chạy chương trình click chuột phải vào màn hình soạn thảo. Rồi ấn F11. Mỗi lần ấn

sẽ chạy 1 lệnh. Khi mô phỏng nếu hàm delay lâu quá 1000 lần lặp. Nhấn tổ hợp phím

Ctrl + F11 để bỏ qua hàm. Hoặc nhấn F10 để chạy từng dòng lệnh.

Để thoát khỏi mô phỏng nhấn tổ hợp phím Ctrl+F5 hoặc nhấn vào biểu tượng mô

phỏng.

2.4.2. Một số bài tập áp dụng.

- Xét mạch điều khiển led như hình vẽ

 63

+ C3

10uF/25V

C2
33p

C1
33p X1

19

X2
18

RESET
9

P1.0
1

V
C

C
4
0

VSS
20

P1.1
2

P1.2
3

P1.3
4

P1.4
5

P1.5
6

P1.6
7

P1.7
8

EA
31

P0.0
39

P0.1
38

P0.2
37

P0.3
36

P0.4
35

P0.5
34

P0.6
33

P0.7
32

U1

8051

R1
10K

5VDC

12Mhz

D1

D2

D3

D4

D5

D6

D7

D8

1
2 3 4 5 6 7 8 9

1
0

R11

RESISTOR SIP 10

2.4.2.1. Ráp mạch

* Bước 1: Ráp mạch dao động:

* Bước 2: Ráp mạch reset.

* Bước 3: Ráp trở băng.

 Nếu không có trở băng có thể thay trở băng 10 chân bằng 9 con trở thường vì

trở băng 10 chân chính là 9 con trở đấu chung 1 đầu.

* Bước 4: Ráp led:

* Bước 5: Đấu 1 dây nhỏ từ chân 40 lên nguồn 5V.

2.4.2.2. Lập trình:

Code như sau:

/* ==

 Mo ta:

 Dieu khien den led.

 Phan cung:

 8 led noi tu +5V qua dien tro han dong vao 8 chan cong 1.

 Thach anh: 12 Mhz

===*/

 64

/******************Bo tien xu li*******************************/

#include <AT89X51.H>// Dinh kem file thu vien

#define bat 1 // Dinh nghia gia tri bat den led

#define tat 0// Dinh nghia gia tri tat den led

/**/

/*******************Khai bao bien toan cuc**********************/

sbit Led1=P1^0; //Khai bao bien Led1 kieu bit chan P1_0

sbit Led2=P1^1; // ...

sbit Led3=P1^2;

sbit Led4=P1^3;

sbit Led5=P1^4;

sbit Led6=P1^5;

sbit Led7=P1^6;

sbit Led8=P1^7;//Khai bao bien Led8 kieu bit chan P1_7

/***/

/********************Khai bao ham****************************/

/*----------------Ham tre-------------------------------

 Ham tao thoi gian tre.

 Dau vao: 1 bien thoi gian.

 Dau ra: khong

--*/

void tre(long time)

{

 long n;// Khai bao bien cuc bo

 for(n=0; n<time; n++)//Lap time lan

 {

 ; // Khong lam gi nop

 }

}

/***/

 65

/*******************Ham chinh**************************/

void main(void)

{

 while(1)// Lap vo han

 {

 Led1= bat;// Bat led 1

 tre(1000);// Tre 1 khoang thoi gian

 Led1= tat;// Tat led 1

 tre(1000);// Tre 1 khoang thoi gian

 }

}

/**/

* Để có thể nạp chương trình vào chíp thì fải tạo ra file .hex. Để tạo ra file .hex làm

như sau . Vào Option for target chỗ chỉnh tần số thạch anh.

Được hình sau:

 66

Kích vào tab Output. Được hình sau:

 67

Lựa chọn vào check: Create Hex File. Nhấn OK. Nhấn fím F7 để biên dịch lại. Khi đó

dưới cửa sổ output window được chữ Creating hex file…

2.4.3. Nạp chương trình vào vi điều khiển:

 Nối đầu cổng COM vào cổng COM máy tính.

 Nối nguồn vào mạch nạp.

 Gắn vi điều khiển vào socket 40 chân.

 Mở phần mềm EZDL4. Thấy có chữ identifing target chip …. Nháy. Trên

EZDL4 sẽ thấy chữ AT89C51 hoặc AT89C52 tùy thuộc vào loại chíp đã lựa chọn.

 Click vào “Send”. Chọn đường dẫn đến thư mục lưu project chọn file cần nạp.

Nhấn OK. Chờ mạch báo chữ Complete thì lấy vi điều khiển ra gắn vào mạch. Chạy

thử trên mạch:

 68

Bài 3: Bộ định thời

❖ GIỚI THIỆU BÀI 3

Bài 3 là bài giới thiệu về bộ định thời trong họ vi điều khiển 89C51. Trên cơ sở đó

người học vận dụng vào các bài tập cụ thể để soạn thảo được một chương trình điều

khiển với những ứng dụng thực tiễn.

❖ MỤC TIÊU CỦA BÀI 3

 - Trình bày cấu tạo và các chế độ làm việc của bộ định thời 89c51 theo nội

dung đã học

 - Thực hiện khởi tạo bộ nhớ đúng yêu cầu kỹ thuật

 - Thực hiện đọc bộ định thời trong khi hoạt động đúng yêu cầu kỹ thuật

 - Thực hiện lập trình điều khiển dùng bộ định thời đúng yêu cầu kỹ thuật

- Tích cực, chủ động và sáng tạo trong học tập.

❖ PHƯƠNG PHÁP GIẢNG DẠY VÀ HỌC TẬP BÀI 3

- Đối với người dạy: sử dụng phương pháp giảng giảng dạy tích cực (diễn giảng,

vấn đáp, dạy học theo vấn đề); yêu cầu người học thực hiện câu hỏi thảo luận

của bài (cá nhân hoặc nhóm).

- Đối với người học: chủ động đọc giáo trình trước buổi học; hoàn thành đầy đủ

câu hỏi thảo luận theo cá nhân hoặc nhóm và nộp lại cho người dạy đúng thời

gian quy định.

❖ ĐIỀU KIỆN THỰC HIỆN BÀI 3

- Phòng học chuyên môn hóa/nhà xưởng: học tại xưởng thực hành vi điều

khiển – có trang bị các máy tính cài sẵn phần mềm mô phỏng.

- Trang thiết bị máy móc: Máy chiếu và các mô hình, thiết bị dạy học khác

- Học liệu, dụng cụ, nguyên vật liệu: Chương trình mô đun, giáo trình, tài liệu

tham khảo, giáo án, phim ảnh, và các KIT thực hành vi điều khiển.

- Các điều kiện khác: Không có

❖ KIỂM TRA VÀ ĐÁNH GIÁ BÀI 3

- Nội dung:

✓ Kiểm tra và đánh giá tất cả nội dung về kiến thức, kỹ năng đã nêu trong mục

tiêu của bài

✓ Năng lực tự chủ và trách nhiệm: Trong quá trình học tập, người học cần:

+ Nghiên cứu bài trước khi đến lớp

+ Chuẩn bị đầy đủ tài liệu học tập.

 69

+ Tham gia đầy đủ thời lượng môn học.

+ Nghiêm túc trong quá trình học tập.

- Phương pháp:

✓ Điểm kiểm tra thường xuyên: Không có

✓ Kiểm tra định kỳ thực hành: 1 điểm kiểm tra (hình thức – Thực hành)

 70

NỘU DUNG BÀI 3

3.1. Giới thiệu về bộ định thời của vi điều khiển

3.1.1. Các biến được định nghĩa trong time.h

Dưới đây liệt kê một số kiểu biến được định nghĩa trong time.h:

Biến Mô tả

size_t Đây là kiểu nguyên không dấu và là kết quả của từ khóa sizeof

clock_t
Đây là một kiểu thích hợp để lưu trữ Processor time (thời gian của bộ vi xử

lý).

time_t is Đây là một kiểu thích hợp để lưu trữ Calendar time.

struct

tm
Đây là một cấu trúc được sử dụng để giữ date và time.

Cấu trúc tm có định nghĩa như sau:

struct tm {

 int tm_sec; /* biểu diễn giây, từ 0 tới 59 */

 int tm_min; /* biểu diễn phút, từ 0 tới 59 */

 int tm_hour; /* biểu diễn giờ, từ 0 tới 23 */

 int tm_mday; /* biểu diễn ngày của tháng, từ 1 tới 31 */

 int tm_mon; /* biểu diễn tháng, từ 0 tới 11 */

 int tm_year; /* biểu diễn năm, bắt đầu từ 1900 */

 int tm_wday; /* ngày trong tuần, từ 0 tới 6 */

 int tm_yday; /* ngày trong năm, từ 0 tới 365 */

 int tm_isdst; /* biểu diễn Daylight Saving Time */

};

3.1.2. Các Macro được định nghĩa trong time.h

Bảng dưới liệt kê một số Macro được định nghĩa trong time.h:

• NULL: Macro này là giá trị của một hằng con trỏ null

• CLOCKS_PER_SEC: Macro này biểu diễn tốc độ đồng hồ mỗi giây

(Processor Clock per Second).

3.2. Thanh ghi SFR của timer

Thanh ghi/ Bit Ký hiệu Chức năng

TMOD Chọn model cho bộ định thời 1

7 GATE Bít điều khiển cổng. Khi được set lên 1, bộ

định thời chỉ hoạt động trong khi INT1 ở mức

cao

 71

6 C/T Bít chọn chức năng đếm hoặc định thời:

 1= đếm sự kiện

 0= định thời trong một khoảng thời gian

5 M1 Bit chọn chế độ thứ nhất

4 M0 Bit chọn chế độ thứ 2

 M1 M0 Chế

độ

Chức năng

 0 0 0 Chế độ định thời 13 bit

 0 1 1 Chế độ định thời 16 bit

 1 0 2 Chế độ tự động nạp lại 8

bit

 1 1 3 Chế độ định thời chia xẻ

3 GATE Bit điều khiển cổng cho bộ định thời 0

2 C/T Bit chọn chức năng đếm / định thời cho bộ định

thời 0

1 M1 Bit chọn chế độ thứ nhất cho bộ định thời 0

0 M0 Bit chọn chế độ thứ 2 cho bộ định thời 0

TF1 TR1 TF1 TR0 IE1 IT1 IE0 IT0

Thanh ghi / Bit Ký hiệu Chức năng

TCON Điều khiển bộ đinh thời

TCON.7 TF1 Cờ tràn của bộ định thời 1. Cờ này được set bởi

phần cứng khi có tràn, được xoá bởi phần mềm,

hoặc bởi phần cứng khi bộ vi xử lý trỏ đến

trình phục vụ ngắt

TCON.6 TR1 Bit điều khiển hoạt động của bộ định thời 1. Bit

này được set hoặc xoá bởi phần mềm để điều

khiển bộ định thời hoạt động hay ngưng

TCON.5 TF0 Cừ tràn của bộ định thời 0

TCON.4 TR0 Bit điều khiển hoạt động của bộ định thời 0

TCON.3 IE1 Cừ ngắt bên ngoài 1 (kích khởi cạnh). Cờ này

được set bởi phần cứng khi có cạnh âm (cuống)

xuất hiện trên chân INT1, được xoá bởi phần

mềm, hoặc phần cứng khi CPU trỏ đến trình

phục vụ ngắt

TCON.2 IT1 Cờ ngắt bên ngoài 1 (kích khởi cạnh hoặc

mức). Cờ này được set hoặc xoá bởi phần mềm

khi xảy ra cạnh âm hoặc mức thấp tại chân ngắt

ngoài

TCON.1 IE0 Cờ ngắt bên ngoài 0 (kích khởi cạnh)

TCON.0 IT0 Cờ ngắt bên ngoài 0 (kích khởi cạnh hoặc

mức)

EA ET2 ES ET1 EX1 EX0 ET0

 Điều khiển các nguồn ngắt

IE (0: không cho phép; 1: cho phép)

IE.7 EA Cho phép/ không cho phép toàn cục

IE.6 --- Không sử dụng

IE.5 ET2 Cho phép ngắt do bộ định thời 2

 72

IE.4 ES Cho phép ngắt do port nối tiếp

IE.3 ET1 Cho phép ngắt cho bộ định thời 1

IE.2 EX1 Cho phép ngắt từ bên ngoài (ngắt ngoài 1)

IE.1 EX0 Cho phép ngắt từ bên ngoài (ngắt ngoài 0)

IE.0 ET0 Cho phép ngắt do bộ định thời 0

3.3. Các chế độ làm việc trong time.h

Sau đây là một số hàm được định nghĩa trong time.h:

STT Hàm & Mô tả

1
Hàm char *asctime(const struct tm *timeptr)

Trả về một con trỏ tới một chuỗi biểu diễn ngày và thời gian của cấu trúc timeptr

2

Hàm clock_t clock(void)

Trả về tốc độ đồng hồ (processor clock) được sử dụng từ lúc bắt đầu một trình

triển khai (thường là lúc bắt đầu chương trình)

3
Hàm char *ctime(const time_t *timer)

Trả về một chuỗi biểu diễn localtime dựa trên tham số timer

4
Hàm double difftime(time_t time1, time_t time2)

Trả về số giây khác nhau giữa time1 và time2 (tức là time1 – time2).

5

Hàm struct tm *gmtime(const time_t *timer)

Giá trị của timer được chia thành cấu trúc tm và được biểu diễn trong UTC, hoặc

GMT

6

Hàm struct tm *localtime(const time_t *timer)

Giá trị của timer được chia thành cấu trúc tm và được biểu diễn trong Local

Timezone

7

Hàm time_t mktime(struct tm *timeptr)

Chuyển đổi cấu trúc được trỏ tới bởi timeptr vào trong một giá trị time_t theo

Local Timezone

8

Hàm size_t strftime(char *str, size_t maxsize, const char *format, const struct tm

*timeptr)

Định dạng thời gian được biểu diễn trong cấu trúc timeptr theo các qui tắc định

dạng được định nghĩa trong format và được lưu trữ vào trong str

9
Hàm time_t time(time_t *timer)

Ước lượng Calendar time hiện tại và mã hóa nó vào trong định dạng time_t

https://quantrimang.com/time-h-trong-c-159093#h14sjn9t15p710qbuiw1wnwj9shuwd3o
https://quantrimang.com/time-h-trong-c-159093#h18sjn9tc5ab1n2zwmf16vsbso17tmsa4
https://quantrimang.com/time-h-trong-c-159093#h49sjn9tc9l8rkf6eq1p1f8p5ng429g
https://quantrimang.com/time-h-trong-c-159093#h77sjn9tcez01nzm87e2r9wk7ai27fu
https://quantrimang.com/time-h-trong-c-159093#h94sjn9tcl84tp9zk7brr4k9174lr5s
https://quantrimang.com/time-h-trong-c-159093#h116sjn9tcq77bglk626vx9eu1pjidnt
https://quantrimang.com/time-h-trong-c-159093#h129sjn9tcu0j1oqm2amgw9x4e1uxytab
https://quantrimang.com/time-h-trong-c-159093#h140sjn9tczuk1earoz6jeavvb1re5iec
https://quantrimang.com/time-h-trong-c-159093#h140sjn9tczuk1earoz6jeavvb1re5iec
https://quantrimang.com/time-h-trong-c-159093#h153sjn9td7vfvfkupi1m8kdg5132ycl4

 73

3.4. Khởi tạo và truy xuất thanh ghi Timer

3.4.1. Hàm asctime() trong C

Hàm char *asctime(const struct tm *timeptr) Trả về một con trỏ tới một chuỗi biểu

diễn ngày và thời gian của cấu trúc struct timeptr.

Khai báo hàm asctime() trong C:

Dưới đây là phần khai báo cho asctime() trong C:

char *asctime(const struct tm *timeptr)

Tham số:

Tham số timeptr là một con trỏ tới cấu trúc tm mà chứa một Calendar time được chia

nhỏ thành các thành phần như sau:

struct tm {

 int tm_sec; /* biểu diễn giây, từ 0 tới 59 */

 int tm_min; /* biểu diễn phút, từ 0 tới 59 */

 int tm_hour; /* biểu diễn giờ, từ 0 tới 23 */

 int tm_mday; /* biểu diễn ngày của tháng, từ 1 tới 31 */

 int tm_mon; /* biểu diễn tháng, từ 0 tới 11 */

 int tm_year; /* biểu diễn năm, bắt đầu từ 1900 */

 int tm_wday; /* ngày trong tuần, từ 0 tới 6 */

 int tm_yday; /* ngày trong năm, từ 0 tới 365 */

 int tm_isdst; /* biểu diễn Daylight Saving Time */

};

Trả về giá trị:

Hàm này trả về một chuỗi chứa thông tin date và time trong một định dạng con người

có thể đọc Www Mmm dd hh:mm:ss: ở đây Www là ngày trong tuần, Mmm là các

ký tự chỉ tháng, dd là ngày của tháng, hh:mm:ss là thời gian và yyyy là năm.

Ví dụ:

Chương trình C sau minh họa cách sử dụng của asctime() trong C:

#include <stdio.h>

#include <string.h>

#include <time.h>

int main()

{

https://quantrimang.com/lap-trinh-c

 74

 struct tm t;

 /* Quantrimang.com */

 t.tm_sec = 15;

 t.tm_min = 16;

 t.tm_hour = 6;

 t.tm_mday = 18;

 t.tm_mon = 6;

 t.tm_year = 118;

 t.tm_wday = 5;

 puts(asctime(&t));

 return(0);

}

Biên dịch và chạy chương trình C trên sẽ cho kết quả:

3.4.1. Hàm clock() trong C

Hàm clock_t clock(void) Trả về số tích tắc đồng hồ đã trôi qua từ khi chương trình

được chạy. Để lấy số giây được sử dụng bởi CPU, bạn sẽ cần chia cho

CLOCKS_PER_SEC.

Trên hệ điều hành 32 bit thì CLOCKS_PER_SEC bằng 1000000, hàm này sẽ trả về

cùng giá trị xấp xỉ mỗi 72 phút.

Khai báo hàm clock() trong C:

Dưới đây là phần khai báo cho clock() trong C:

clock_t clock(void)

Tham số:

• Hàm này không nhận tham số nào.

Trả về giá trị:

Hàm này trả về số tích tắc đồng hồ đã trôi qua từ khi chương trình được chạy. Nếu thất

bại, hàm trả về -1.

Ví dụ:

Chương trình C sau minh họa cách sử dụng của clock() trong C:

#include <time.h>

#include <stdio.h>

 75

int main()

{

 clock_t start_t, end_t, total_t;

 int i;

 start_t = clock();

 printf("Bat dau chuong trinh, start_t = %ld\n", start_t);

 printf("Quet qua mot vong lap lon, start_t = %ld\n", start_t);

 for(i=0; i< 10000000; i++)

 {

 }

 end_t = clock();

 printf("Ket thuc vong lap, end_t = %ld\n", end_t);

 total_t = (double)(end_t - start_t) / CLOCKS_PER_SEC;

 printf("Tong thoi gian su dung boi CPU: %f\n", total_t);

 printf("Thoat chuong trinh...\n");

 return(0);

}

Chạy code trên ta nhận được kết quả như sau:

Bat dau chuong trinh, start_t = 884

Quet qua mot vong lap lon, start_t = 884

Ket thuc vong lap, end_t = 32819

Tong thoi gian su dung boi CPU: 0.000000

Thoat chuong trinh...

3.4.3. Hàm ctime() trong C

Hàm char *ctime(const time_t *timer) trả về một chuỗi biểu diễn localtime dựa trên

tham số timer

Chuỗi trả về có định dạng sau: Www Mmm dd hh:mm:ss trong đó Www là ngày

trong tuần, Mmm là các ký tự chỉ tháng, dd là ngày của tháng, hh:mm:ss là thời gian

và yyyy là năm.

 76

Khai báo hàm ctime() trong C:

Dưới đây là phần khai báo cho ctime() trong C:

char *ctime(const time_t *timer)

Tham số:

• timer -- Đây là con trỏ tới một đối tượng time_t mà chứa một Calendar time.

Trả về giá trị:

Hàm này trả về một chuỗi chứa thông tin date và time trong một định dạng con người

có thể đọc.

Ví dụ:

Chương trình C sau minh họa cách sử dụng của ctime() trong C:

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t curtime;

 time(&curtime);

 printf("Thời gian hiện tại = %s", ctime(&curtime));

 return(0);

}

Biên dịch và chạy chương trình C trên sẽ cho kết quả:

Thời gian hiện tại = Mon Oct 15 04:49:13 2018

3.4.4. Hàm difftime() trong C

Hàm double difftime(time_t time1, time_t time2) trả về số giây khác nhau

giữa time1và time2, ví dụ như là (time1 - time2). Hai time được xác định trong

Calendar time, biểu diễn thời gian đã trôi qua từ Epoch (00:00:00 1/1/19700 theo

UTC).

Khai báo hàm difftime() trong C:

Dưới đây là phần khai báo cho difftime() trong C:

double difftime(time_t time1, time_t time2)

 77

Tham số:

• time1 -- Đây là đối tượng time_t cho thời gian kết thúc.

• time2 -- Đây là đối tượng time_t cho thời gian bắt đầu.

Trả về giá trị:

Hàm này trả về số giây khác nhau giữa hai thời gian (time2 – time1) dưới dạng một

giá trị double.

Ví dụ:

Chương trình C sau minh họa cách sử dụng của difftime() trong C:

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t start_t, end_t;

 double diff_t;

 printf("Bắt đầu chương trình...\n");

 time(&start_t);

 time(&end_t);

 diff_t = difftime(end_t, start_t);

 printf("Thời gian thực thi = %f\n", diff_t);

 printf("Thoát chương trình...\n");

 return(0);

}

Biên dịch và chạy chương trình C trên sẽ cho kết quả:

Bắt đầu chương trình...

Thời gian thực thi = 0.000000

Thoát chương trình...

 78

3.4.5. Hàm gmtime() trong C

Hàm struct tm *gmtime(const time_t *timer) sử dụng giá trị được trỏ tới bởi timer

để điền vào một cấu trúc tm với các giá trị mà biểu diễn thời gian tương ứng, được

diễn đạt trong UTC hoặc GMT.

Khai báo hàm gmtime() trong C:

Dưới đây là phần khai báo cho gmtime() trong C:

struct tm *gmtime(const time_t *timer)

Tham số:

• timeptr -- Đây là con trỏ trỏ tới một giá trị time_t biểu diễn một Calendar time.

Trả về giá trị:

Hàm này trả về con trỏ tới cấu trúc tm với thông tin thời gian được điền vào trong.

Dưới đây là chi tiết về cấu trúc timeptr.

struct tm {

 int tm_sec; /* biểu diễn giây, từ 0 tới 59 */

 int tm_min; /* biểu diễn phút, từ 0 tới 59 */

 int tm_hour; /* biểu diễn giờ, từ 0 tới 23 */

 int tm_mday; /* biểu diễn ngày của tháng, từ 1 tới 31 */

 int tm_mon; /* biểu diễn tháng, từ 0 tới 11 */

 int tm_year; /* biểu diễn năm, bắt đầu từ 1900 */

 int tm_wday; /* ngày trong tuần, từ 0 tới 6 */

 int tm_yday; /* ngày trong năm, từ 0 tới 365 */

 int tm_isdst; /* biểu diễn Daylight Saving Time */

};

Ví dụ:

Chương trình C sau minh họa cách sử dụng của gmtime() trong C, bạn có thể tham

khảo thêm danh sách múi giờ tại đây:

#include <stdio.h>

#include <time.h>

#define BST (+1)

#define CCT (+8)

int main ()

https://quantrimang.com/url?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTGlzdF9vZl90aW1lX3pvbmVfYWJicmV2aWF0aW9ucw%3D%3D
https://quantrimang.com/url?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTGlzdF9vZl90aW1lX3pvbmVfYWJicmV2aWF0aW9ucw%3D%3D

 79

{

 time_t rawtime;

 struct tm *info;

 time(&rawtime);

 /* Get GMT time */

 info = gmtime(&rawtime);

 printf("Thời gian hiện tại:\n");

 printf("Tại London: %2d:%02d\n", (info->tm_hour+BST)%24, info->tm_min);

 printf("Tại Trung Quốc: %2d:%02d\n", (info->tm_hour+CCT)%24, info->tm_min);

 return(0);

}

Biên dịch và chạy chương trình C trên sẽ cho kết quả:

Thời gian hiện tại:

Tại London: 5:51

Tại Trung Quốc: 12:51

3.4.6. Hàm localtime() trong C

Hàm struct tm *localtime(const time_t *timer) sử dụng time được trỏ tới bởi timer

để điền một cấu trúc tm với các giá trị mà biểu diễn Local time tương ứng. Giá trị của

timer được chia vào trong cấu trúc tm và được diễn đạt trong Local Timezone.

Khai báo hàm localtime() trong C:

Dưới đây là phần khai báo cho localtime() trong C:

struct tm *localtime(const time_t *timer)

Tham số:

• timer -- Là con trỏ trỏ tới giá trị time_t biểu diễn một calendar time.

Trả về giá trị:

Hàm này trả về con trỏ tới cấu trúc tm với thông tin thời gian được điền vào trong.

Dưới đây là chi tiết về cấu trúc timeptr.

struct tm {

 int tm_sec; /* biểu diễn giây, từ 0 tới 59 */

 80

 int tm_min; /* biểu diễn phút, từ 0 tới 59 */

 int tm_hour; /* biểu diễn giờ, từ 0 tới 23 */

 int tm_mday; /* biểu diễn ngày của tháng, từ 1 tới 31 */

 int tm_mon; /* biểu diễn tháng, từ 0 tới 11 */

 int tm_year; /* biểu diễn năm, bắt đầu từ 1900 */

 int tm_wday; /* ngày trong tuần, từ 0 tới 6 */

 int tm_yday; /* ngày trong năm, từ 0 tới 365 */

 int tm_isdst; /* biểu diễn Daylight Saving Time */

};

Ví dụ:

Chương trình C sau minh họa cách sử dụng của localtime() trong C:

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t rawtime;

 struct tm *info;

 char buffer[80];

 time(&rawtime);

 info = localtime(&rawtime);

 printf("Local time và Local date hiện tại là: \n%s", asctime(info));

 return(0);

}

Biên dịch và chạy chương trình C trên sẽ cho kết quả:

Local time và Local date hiện tại là:

Mon Oct 15 11:56:31 2018

 81

3.4.7. Hàm mktime() trong C

Hàm time_t mktime(struct tm *timeptr) chuyển đổi cấu trúc được trỏ tới bởi timeptr

vào trong một giá trị time_t theo Local Timezone.

Khai báo hàm mktime() trong C:

Dưới đây là phần khai báo cho mktime() trong C:

time_t mktime(struct tm *timeptr)

Tham số:

• timeptr -- là con trỏ trỏ tới giá trị time_t biểu diễn một calendar time, mà được

chia nhỏ thành các thành phần với cấu trúc:

struct tm {

 int tm_sec; /* biểu diễn giây, từ 0 tới 59 */

 int tm_min; /* biểu diễn phút, từ 0 tới 59 */

 int tm_hour; /* biểu diễn giờ, từ 0 tới 23 */

 int tm_mday; /* biểu diễn ngày của tháng, từ 1 tới 31 */

 int tm_mon; /* biểu diễn tháng, từ 0 tới 11 */

 int tm_year; /* biểu diễn năm, bắt đầu từ 1900 */

 int tm_wday; /* ngày trong tuần, từ 0 tới 6 */

 int tm_yday; /* ngày trong năm, từ 0 tới 365 */

 int tm_isdst; /* biểu diễn Daylight Saving Time */

};

Trả về giá trị:

Hàm này trả về giá trị time_t tương ứng với tham số calendar time đã truyền. Nếu có

lỗi, hàm này trả về giá trị -1.

Ví dụ:

Chương trình C sau minh họa cách sử dụng của mktime() trong C:

#include <stdio.h>

#include <time.h>

int main ()

{

 int ret;

 struct tm info;

 82

 char buffer[80];

 info.tm_year = 2016 - 1900;

 info.tm_mon = 7 - 1;

 info.tm_mday = 4;

 info.tm_hour = 0;

 info.tm_min = 0;

 info.tm_sec = 1;

 info.tm_isdst = -1;

 ret = mktime(&info);

 if(ret == -1)

 {

 printf("Error: không thể lấy time bằng cách sử dụng mktime\n");

 }

 else

 {

 strftime(buffer, sizeof(buffer), "%c", &info);

 printf(buffer);

 }

 return(0);

}

Biên dịch và chạy chương trình C trên sẽ cho kết quả:

Mon Jul 4 00:00:01 2016

3.4.8. Hàm strftime() trong C

Hàm size_t strftime(char *str, size_t maxsize, const char *format, const struct tm

*timeptr) định dạng thời gian được biểu diễn trong cấu trúc timeptr theo các qui tắc

định dạng được định nghĩa trong format và được lưu trữ vào trong str.

Khai báo hàm strftime() trong C:

Dưới đây là phần khai báo cho strftime() trong C:

size_t strftime(char *str, size_t maxsize, const char *format, const struct tm *timeptr)

 83

Tham số:

• str -- Đây là con trỏ tới mảng đích, nơi mà chuỗi kết quả được sao chép.

• maxsize -- Đây là số ký tự tối đa để được sao chép tới str.

• format -- Đây là chuỗi chứa bất cứ tổ hợp nào của các ký tự thông thường và các

format specifier đặc biệt. Những format specifier này được thay thế bởi hàm này

bởi các giá trị tương ứng để biểu diễn thời gian được xác định trong tm. Các

format specifier là:

Specifier Thay thế cho Ví dụ

%a Tên ngày trong tuần viết tắt Sun

%A Tên ngày trong tuần đầy đủ Sunday

%b Tên tháng viết tắt Mar

%B Tên tháng đầy đủ March

%c Biểu diễn date và time
Sun Aug 19 02:56:02

2012

%d Ngày trong tháng (01-31) 19

%H Giờ, trong định dạng 24h (00-23) 14

%I Giờ, trong định dạng 12h (01-12) 05

%j Ngày trong năm (001-366) 231

%m Tháng, dưới dạng biểu diễn số (01-12) 08

%M Phút (00-59) 55

%p AM hoặc PM PM

%S Giây (00-61) 02

%U
Số tuần, có ngày Chủ nhật đầu tiên là ngày đầu tiên

của tuần (00-53)
33

%w Ngày trong tuần dưới dạng biểu diễn số (0-6) 4

%W
Số tuần, có ngày thứ Hai đầu tiên là ngày đầu tiên của

tuần (00-53)
34

%x Biểu diễn date 08/19/12

%X Biểu diễn time 02:50:06

%y Năm, biểu diễn dưới dạng hai số cuối (00-99) 01

%Y Năm 2012

%Z Tên Timezone CDT

%% Ký hiệu % %

• timeptr -- là con trỏ trỏ tới giá trị time_t biểu diễn một calendar time, mà được

chia nhỏ thành các thành phần với cấu trúc:

 84

struct tm {

 int tm_sec; /* biểu diễn giây, từ 0 tới 59 */

 int tm_min; /* biểu diễn phút, từ 0 tới 59 */

 int tm_hour; /* biểu diễn giờ, từ 0 tới 23 */

 int tm_mday; /* biểu diễn ngày của tháng, từ 1 tới 31 */

 int tm_mon; /* biểu diễn tháng, từ 0 tới 11 */

 int tm_year; /* biểu diễn năm, bắt đầu từ 1900 */

 int tm_wday; /* ngày trong tuần, từ 0 tới 6 */

 int tm_yday; /* ngày trong năm, từ 0 tới 365 */

 int tm_isdst; /* biểu diễn Daylight Saving Time */

};

Trả về giá trị:

Nếu chuỗi kết quả có kích cỡ nhỏ hơn kích cỡ các ký tự (bao gồm ký tự null kết thúc),

thì toàn bộ ký tự được sao chép tới str (không bao gồm ký tự null kết thúc) được trả về.

Nếu không, hàm trả về 0.

Ví dụ:

Chương trình C sau minh họa cách sử dụng của strftime() trong C:

#include <stdio.h>

#include <time.h>

int main () {

 time_t rawtime;

 struct tm *info;

 char buffer[80];

 time(&rawtime);

 info = localtime(&rawtime);

 strftime(buffer,80,"%x - %I:%M%p", info);

 printf("Date & time đã định dạng theo hàm strftime là: \n|%s|\n", buffer);

 return(0);

}

Biên dịch và chạy chương trình C trên sẽ cho kết quả:

Date & time đã định dạng theo hàm strftime là:

|10/15/18 - 04:58AM|

 85

3.4.9. Hàm time() trong C

Hàm time_t time(time_t *seconds) trả về thời gian từ Epoch (00:00:00 1/1/1970 theo

UTC), được ước lượng bằng giây. Nếu tham số seconds không là NULL, thì giá trị trả

về cũng được lưu trữ trong biến seconds.

Khai báo hàm time() trong C:

Dưới đây là phần khai báo cho time() trong C:

time_t time(time_t *t)

Tham số:

• seconds -- Đây là con trỏ tới một đối tượng của kiểu time_t, nơi giá trị seconds

sẽ được lưu trữ.

Trả về giá trị:

Hàm trả về Calendar time hiện tại dưới dạng một đối tượng time_t.

Ví dụ:

Chương trình C sau minh họa cách sử dụng của time() trong C:

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t seconds;

 seconds = time(NULL);

 printf("Số giờ (h) bắt đầu từ 1/1/1970 = %ld giờ\n", seconds/3600);

 return(0);

}

Biên dịch và chạy chương trình C trên sẽ cho kết quả:

Số giờ (h) bắt đầu từ 1/1/1970 = 427660 giờ

• string.h trong C

• stdlib.h trong C

• stddef.h trong C

• Trắc nghiệm về lập trình C P4

• Bộ câu hỏi trắc nghiệm về lập trình có giải P6

• stdio.h trong C

https://quantrimang.com/string-h-trong-c-157992
https://quantrimang.com/stdlib-h-trong-c-157924
https://quantrimang.com/stddef-h-trong-c-157817
https://quantrimang.com/trac-nghiem-ve-lap-trinh-c-p4-159204
https://quantrimang.com/bo-cau-hoi-trac-nghiem-ve-lap-trinh-co-giai-p6-159168
https://quantrimang.com/stdio-h-trong-c-157821

 86

Bài 4: Cổng nối tiếp

❖ GIỚI THIỆU BÀI 4

Bài 4 là bài giới thiệu về cổng nối tiếp và cách thức truy xuất chúng trong họ vi

điều khiển 89C51. Trên cơ sở đó người học vận dụng vào các bài tập cụ thể để soạn

thảo được một chương trình điều khiển với những ứng dụng thực tiễn.

❖ MỤC TIÊU CỦA BÀI 4

 - Trình bày cấu tạo và các chế độ làm việc của cổng truyền thông nối tiếp theo

nội dung đã học

 - Thực hiện cổng truyền thông nối tiếp đúng yêu cầu kỹ thuật.

 - Thực hiện thu phát dữ liệu nối tiếp bằng 89c51 đạt yêu cầu kỹ thuật

 - Tích cực, chủ động và sáng tạo trong học tập.

❖ PHƯƠNG PHÁP GIẢNG DẠY VÀ HỌC TẬP BÀI 4

- Đối với người dạy: sử dụng phương pháp giảng giảng dạy tích cực (diễn giảng,

vấn đáp, dạy học theo vấn đề); yêu cầu người học thực hiện câu hỏi thảo luận

của bài (cá nhân hoặc nhóm).

- Đối với người học: chủ động đọc giáo trình trước buổi học; hoàn thành đầy đủ

câu hỏi thảo luận theo cá nhân hoặc nhóm và nộp lại cho người dạy đúng thời

gian quy định.

❖ ĐIỀU KIỆN THỰC HIỆN BÀI 4

- Phòng học chuyên môn hóa/nhà xưởng: học tại xưởng thực hành vi điều

khiển – có trang bị các máy tính cài sẵn phần mềm mô phỏng.

- Trang thiết bị máy móc: Máy chiếu và các mô hình, thiết bị dạy học khác

- Học liệu, dụng cụ, nguyên vật liệu: Chương trình mô đun, giáo trình, tài liệu

tham khảo, giáo án, phim ảnh, và các KIT thực hành vi điều khiển.

- Các điều kiện khác: Không có

❖ KIỂM TRA VÀ ĐÁNH GIÁ BÀI 4

- Nội dung:

✓ Kiểm tra và đánh giá tất cả nội dung về kiến thức, kỹ năng đã nêu trong mục

tiêu của bài

✓ Năng lực tự chủ và trách nhiệm: Trong quá trình học tập, người học cần:

+ Nghiên cứu bài trước khi đến lớp

+ Chuẩn bị đầy đủ tài liệu học tập.

+ Tham gia đầy đủ thời lượng môn học.

 87

+ Nghiêm túc trong quá trình học tập.

- Phương pháp:

✓ Điểm kiểm tra thường xuyên: Không có

✓ Kiểm tra định kỳ thực hành: 1 điểm kiểm tra (hình thức – Thực hành)

 88

NỘU DUNG BÀI 4

4.1. Khái quát chung

Giao tiếp nối tiếp có nghĩa là truyền dữ liệu từng chút một tại một thời điểm,

khi truyền thông song song, số lượng bit có thể được truyền tại một thời điểm phụ

thuộc vào số lượng dòng dữ liệu có sẵn để liên lạc.

Hai phương thức giao tiếp nối tiếp là

• Truyền thông đồng bộ: Chuyển dữ liệu hàng loạt trong cấu trúc khung tại một

thời điểm

• Truyền thông không đồng bộ: Truyền dữ liệu byte trong cấu trúc khung tại một

thời điểm

8051 đã được xây dựng trong UART với RXD (nhận dữ liệu nối tiếp pin) và TXD

(dữ liệu nối tiếp truyền pin) trên PORT3.0 và PORT3.1 tương ứng.

Giao tiếp không đồng bộ

Giao tiếp nối tiếp không đồng bộ được sử dụng rộng rãi để truyền byte theo định

hướng.

4.1.2. Cấu trúc khung trong giao tiếp không đồng bộ:

• START bit: Đó là một chút mà bắt đầu giao tiếp nối tiếp và nó luôn luôn thấp.

• Gói bit dữ liệu : Các bit dữ liệu có thể là gói 5 đến 9 bit. Thông thường, chúng

tôi sử dụng gói dữ liệu 8 bit, luôn được gửi sau bit START.

• STOP bit : Đây là một hoặc hai bit. Nó được gửi sau khi gói dữ liệu bit để cho

biết kết thúc khung. Stop bit luôn logic cao.

Trong khung giao tiếp nối tiếp không đồng bộ, bit START đầu tiên được theo sau bởi

byte dữ liệu và ở bit STOP cuối cùng, tạo thành một khung 10 bit. Đôi khi bit cuối

cùng cũng được sử dụng như bit chẵn lẻ.

 8051 Cấu trúc khung nối tiếp

Tốc độ truyền dữ liệu

4.1.2. Tiêu chuẩn giao diện

Tốc độ truyền dữ liệu được đo bằng bit trên giây (bps). Trong hệ nhị phân, nó cũng

được gọi là tốc độ truyền (số lần thay đổi tín hiệu mỗi giây). Tốc độ truyền chuẩn được

hỗ trợ là 1200, 2400, 4800, 19200, 38400, 57600 và 115200. Thông thường hầu hết

thời gian 9600 bps được sử dụng khi tốc độ không phải là vấn đề lớn.

• 8051 giao tiếp nối tiếp có mức điện áp TTL là 0 v cho logic 0 và 5v cho logic 1.

• Trong máy tính và hầu hết các thiết bị cũ cho giao tiếp nối tiếp, giao thức

RS232 với đầu nối DB9 được sử dụng. Giao tiếp nối tiếp RS232 có các mức

điện áp khác nhau hơn 8051 giao tiếp nối tiếp. tức là +3 v đến +25 v cho logic

zero và -3 v đến -25 v cho logic 1.

 89

• Vì vậy, để giao tiếp với giao thức RS232, chúng ta cần phải sử dụng chuyển đổi

mức điện áp như MAX232 IC.

• Mặc dù có 9 chân trong đầu nối DB9, chúng tôi không cần phải sử dụng tất cả

các chân. Chỉ cần kết nối 2 Tx (Truyền), Rx thứ 3 (Nhận) và pin GND thứ 5.

4.2. Khởi tạo và truy xuất thanh ghi PORT nối tiếp

Lập trình UART 8051

4.2.1. Baud Rate tính toán:

• Để đáp ứng các tốc độ truyền chuẩn thường tinh thể với 11,0592 MHz được sử

dụng.

• Như chúng ta đã biết, 8051 chia tần số pha lê cho 12 để có tần số chu trình máy

là 921,6 kHz.

• Khối UART nội bộ 8051 chia tần số chu trình máy này là 32, cho tần số 28800

Hz được UART sử dụng.

• Để đạt được tốc độ truyền 9600, tần số 28800 Hz một lần nữa sẽ được chia cho

3.

• Điều này đạt được bằng cách sử dụng Timer1 ở chế độ-2 (chế độ tải lại tự

động) bằng cách đặt 253 trong TH1 (8-bit reg.)

• Vì vậy, 28800 Hz sẽ được chia cho 3 như bộ đếm thời gian sẽ tràn sau mỗi 3

chu kỳ .

• chúng ta có thể đạt được tốc độ truyền khác nhau bằng cách đặt hệ số phân chia

vào thanh ghi TH1.

 Hệ số phân chia để đạt được tốc độ truyền khác nhau

Tốc độ truyền TH1 (Hex)

9600 FD

4800 FA

2400 F4

1200 E8

4.2.2. Đăng ký giao tiếp nối tiếp

SBUF: Đăng ký bộ đệm nối tiếp

Đây là thanh ghi dữ liệu liên lạc nối tiếp được sử dụng để truyền hoặc nhận dữ

liệu qua nó.

 90

SCON: Đăng ký kiểm soát nối tiếp

Thanh ghi điều khiển nối tiếp SCON được sử dụng để cài đặt chế độ hoạt động

truyền thông nối tiếp. Nó cũng được sử dụng để điều khiển các hoạt động truyền và

nhận.

Bit 7: 6 - SM0: SM1 : Trình chỉ định chế độ nối tiếp

Chế độ SM0 SM1 Chế độ

0 0 0
1/12 của chế độ đăng ký thay đổi tần số dao động cố định tốc độ

truyền

1 0 1 UART 8 bit với bộ đếm thời gian 1 được xác định tốc độ truyền

2 1 0 UART 9 bit với 1/32 tốc độ truyền cố định của Osc

3 1 1 UART 9 bit với bộ đếm thời gian 1 được xác định tốc độ truyền

Thông thường chế độ-1 (SM0 = 0, SM1 = 1) được sử dụng với 8 bit dữ liệu, 1 bit bắt

đầu và 1 bit dừng.

Bit 5 - SM2: cho Giao tiếp đa xử lý

 Bit này cho phép tính năng liên lạc đa bộ xử lý ở chế độ 2 & 3.

Bit 4 - REN: Nhận Kích hoạt

 1 = Nhận cho phép

 0 = Nhận vô hiệu hóa

Bit 3 - TB8: Truyền bit thứ 9

 Đây là bit thứ 9 được truyền ở chế độ 2 & 3 (chế độ 9 bit)

Bit 2 - RB8: Nhận bit thứ 9

Đây là lần thứ 9 nhận bit ở chế độ 2 & 3 (chế độ 9 bit), ở chế độ 1, nếu SM2 = 0 thì

RB8 giữ bit dừng nhận được

Bit 1 - TI: Truyền cờ ngắt

Bit này cho biết quá trình truyền hoàn tất và được thiết lập sau khi truyền byte từ bộ

đệm. Thông thường TI (Transmit Interrupt Flag) được đặt bằng phần cứng ở cuối bit 8

ở chế độ 0 và ở đầu bit dừng ở các chế độ khác.

Bit 0 - RI: Nhận cờ ngắt

 91

Bit này cho biết việc tiếp nhận hoàn tất và được thiết lập sau khi nhận được byte hoàn

chỉnh trong bộ đệm. Thông thường RI (Nhận cờ ngắt) được đặt bằng phần cứng ở chế

độ nhận ở cuối bit 8 ở chế độ 0 và tại bit dừng nhận thời gian ở các chế độ khác.

4.2.3. Các bước lập trình

1. Định cấu hình hẹn giờ 1 ở chế độ tự động tải lại.

2. Tải TH1 với giá trị theo tốc độ truyền yêu cầu, ví dụ: đối với tải 9600 tốc độ

truyền 0xFD. (-3 trong số thập phân)

3. Tải SCON với chế độ nối tiếp và bit điều khiển. ví dụ cho chế độ 1 và cho phép

nhận, tải 0x50.

4. Bắt đầu timer1 bằng cách đặt bit TR1 thành 1.

5. Tải dữ liệu truyền trong thanh ghi SBUF.

6. Chờ cho đến khi dữ liệu được tải hoàn toàn được truyền đi bằng cách bỏ phiếu

TI flag.

7. Khi cờ TI được thiết lập, hãy xóa nó và lặp lại từ bước 5 để truyền thêm dữ liệu.

4.3. Luyện tập

Bài tập 1:

Hãy chương trình 8051 (ở đây AT89C51) để gửi dữ liệu ký tự “kiểm tra”

serially ở tốc độ 9600 baud ở chế độ 1

Chương trình truyền dữ liệu nối tiếp

#include <reg51.h> /* Include x51 header file */

void UART_Init()

{

 TMOD = 0x20; /* Timer 1, 8-bit auto reload mode */

 TH1 = 0xFD; /* Load value for 9600 baud rate */

 SCON = 0x50; /* Mode 1, reception enable */

 TR1 = 1; /* Start timer 1 */

}

void Transmit_data(char tx_data)

{

 SBUF = tx_data; /* Load char in SBUF register */

 while (TI==0); /* Wait until stop bit transmit */

 TI = 0; /* Clear TI flag */

}

 92

void String(char *str)

{

 int i;

 for(i=0;str[i]!=0;i++) /* Send each char of string till the NULL */

 {

 Transmit_data(str[i]); /* Call transmit data function */

 }

}

void main()

{

 UART_Init(); /* UART initialize function */

 String("test"); /* Transmit 'test' */

 while(1);

}

Bài tập 2: Ngắt nối tiếp 8051

8051 UART có ngắt nối tiếp. Bất cứ khi nào dữ liệu được truyền hoặc nhận, cờ ngắt

nối tiếp TI và RI được kích hoạt tương ứng.

Ngắt nối tiếp 8051 có địa chỉ vectơ (0023H), nơi nó có thể nhảy để phục vụ ISR

(thường xuyên dịch vụ ngắt) nếu ngắt toàn cầu và nối tiếp được bật.

Chúng ta hãy xem cách thức làm gián đoạn nối tiếp sẽ được sử dụng trong lập trình

truyền thông nối tiếp.

Các bước lập trình

1. Đặt hẹn giờ 1 ở chế độ tải lại tự động.

2. Tải TH1 với giá trị theo tốc độ truyền yêu cầu, ví dụ: đối với tải 9600 tốc độ

truyền 0xFD.

3. Tải SCON với chế độ nối tiếp và bit điều khiển. ví dụ cho chế độ 1 và cho phép

tải tiếp nhận 0x50.

4. Bắt đầu timer1 bằng cách đặt bit TR1 thành 1.

5. Bật bit ngắt toàn cục và nối tiếp, tức là EA = 1 và ES = 1.

 93

6. Bây giờ bất cứ khi nào dữ liệu được nhận hoặc truyền, cờ ngắt sẽ được thiết lập

và bộ điều khiển sẽ nhảy tới ISR nối tiếp.

7. Lưu ý rằng cờ TI / RI phải được xóa bằng phần mềm trong ISR.

Lưu ý: Đối với ngắt truyền và tiếp nhận, cùng một địa chỉ vectơ ngắt được gán, vì vậy

khi bộ điều khiển nhảy tới ISR, chúng ta phải kiểm tra xem nó có bị ngắt Tx hay Rx

gián đoạn bởi trạng thái bit TI và RI.

Bài tập áp dụng: Hãy chương trình 8051 (ở đây AT89C51) để nhận dữ liệu ký tự

serially ở tốc độ 9600 baud ở chế độ 1 và gửi dữ liệu nhận được trên cổng 1 bằng cách

sử dụng ngắt nối tiếp.

• Trong ví dụ này, sau khi nhận được byte, cờ RI được đặt sẽ tạo ra ngắt nối

tiếp.

• Sau khi ngắt, 8051 sẽ nhảy tới thường trình ISR nối tiếp.

• Trong thói quen ISR, chúng tôi sẽ gửi dữ liệu đến cổng 1.

Chương trình gián đoạn nối tiếp

#include <reg51.h> /* Include x51 header file */

void Ext_int_Init()

{ EA = 1; /* Enable global interrupt */

 ES = 1; /* Enable serial interrupt */ }

void UART_Init()

{ TMOD = 0x20; /* Timer 1, 8-bit auto reload mode */

 TH1 = 0xFD; /* Load value for 9600 baud rate */

 SCON = 0x50; /* Mode 1, reception enable */

 TR1 = 1; /* Start timer 1 */

void Serial_ISR() interrupt 4

{ P1 = SBUF; /* Give received data on port 1 */

 RI = 0; /* Clear RI flag */}

void main()

{ P1 = 0x00; /* Make P1 output */

 Ext_int_Init(); /* Call Ext. interrupt initialize */

 UART_Init();

 while(1);

}

 94

Bài 5: Tổ chức ngắt

❖ GIỚI THIỆU BÀI 5

Bài 5 là bài giới thiệu về tổ chức ngắt trong họ vi điều khiển 89C51. Hướng dẫn về

tầm quan trọn của tổ chức ngắt trong điều khiển hệ thống cơ điện tử và phương thức

truy xuất tổ chức ngắt. Trên cơ sở đó người học vận dụng vào các bài tập cụ thể để

soạn thảo được một chương trình điều khiển với những ứng dụng thực tiễn.

❖ MỤC TIÊU CỦA BÀI 5

 - Trình bày tác dung thực tế của một hệ thống được điều khiển bằng tín hiệu

ngắt theo nội dung đã học

 - Thực hiện tổ chức ngắt và cơ chế thực hiện chương trình phục vụ ngắt của

89c51 đúng yêu cầu kỹ thuật.

 - Thực hiện tổ chức ngăt đạt yêu cầu kỹ thuật

 - Tích cực, chủ động và sáng tạo trong học tập.

❖ PHƯƠNG PHÁP GIẢNG DẠY VÀ HỌC TẬP BÀI 5

- Đối với người dạy: sử dụng phương pháp giảng giảng dạy tích cực (diễn giảng,

vấn đáp, dạy học theo vấn đề); yêu cầu người học thực hiện câu hỏi thảo luận

của bài (cá nhân hoặc nhóm).

- Đối với người học: chủ động đọc giáo trình trước buổi học; hoàn thành đầy đủ

câu hỏi thảo luận theo cá nhân hoặc nhóm và nộp lại cho người dạy đúng thời

gian quy định.

❖ ĐIỀU KIỆN THỰC HIỆN BÀI 5

- Phòng học chuyên môn hóa/nhà xưởng: học tại xưởng thực hành vi điều

khiển – có trang bị các máy tính cài sẵn phần mềm mô phỏng.

- Trang thiết bị máy móc: Máy chiếu và các mô hình, thiết bị dạy học khác

- Học liệu, dụng cụ, nguyên vật liệu: Chương trình mô đun, giáo trình, tài liệu

tham khảo, giáo án, phim ảnh, và các KIT thực hành vi điều khiển.

- Các điều kiện khác: Không có

❖ KIỂM TRA VÀ ĐÁNH GIÁ BÀI 5

- Nội dung:

✓ Kiểm tra và đánh giá tất cả nội dung về kiến thức, kỹ năng đã nêu trong mục

tiêu của bài

✓ Năng lực tự chủ và trách nhiệm: Trong quá trình học tập, người học cần:

+ Nghiên cứu bài trước khi đến lớp

+ Chuẩn bị đầy đủ tài liệu học tập.

 95

+ Tham gia đầy đủ thời lượng môn học.

+ Nghiêm túc trong quá trình học tập.

- Phương pháp:

✓ Điểm kiểm tra thường xuyên: Không có

✓ Kiểm tra định kỳ thực hành: 1 điểm kiểm tra (hình thức – Thực hành)

 96

NỘU DUNG BÀI 5

5.1. Tổ chức ngắt

Theo các nhà sản xuất thí vi điều khiển 8051 có 6 ngắt được phân bố như sau:

- RESET: Khi chân RESET được kích hoạt từ 8051, bộ đếm chương trình nhảy về địa

chỉ 0000H.

- 2 ngắt dành cho các bộ định thời: 1 cho Timer0 và 1 cho Timer1. Địa chỉ tương ứng

của các ngắt này là 000BH và 001BH.

- 2 ngắt dành cho các ngắt phần cứng bên ngoài: chân 12 (P3.2) và 13 (P3.3) của cổng

P3 là các ngắt phần cứng bên ngoài INT0 và INT1 tương ứng. Địa chỉ tương ứng của

các ngắt ngoài này là 0003H và 0013H.

- Truyền thông nối tiếp: có 1 ngắt chung cho cả nhận và truyền dữ liệu nối tiếp. Địa

chỉ của ngắt này trong bảng vector ngắt là 0023H.

Các nguồn ngắt:

Ngắt do Cờ Địa chỉ vector

Reset hệ thống RST 0000H

Ngắt ngoài 0 IE0 0003H

Bộ định thời 0 TF0 000BH

Ngắt ngoài 1 IE1 0013H

Bộ định thời 1 TF1 001BH

Port nối tiếp RI hoặc TI 0023H

Bộ định thời 2 TF2 hoặc EXF2 002BH

Một chương trình chính không có ngắt thì chạy liên tục, còn chương trình có

ngắt thì cứ khi nào điều kiện ngắt được đảm bào thì con trỏ sẽ nhảy sang hàm ngắt

thực hiện xong hàm ngắt lại quay về đúng chỗ cũ thực hiện tiếp chương trình chính.

Ngắt dùng cho mục đích đa nhiệm.

5.2. Xử lý ngắt.

5.2.1. Quy trình khi thực hiện một ngắt

Khi kích hoạt một ngắt bộ vi điều khiển thực hiện các bước sau:

- Vi điều khiển sẽ hoàn thành nốt lệnh đang thực hiện và lưu địa chỉ của lệnh kế

tiếp vào ngăn xếp.

 - Nó cũng lưu tình trạng hiện tại của tất cả các ngắt.

- Nó nhảy đến một vị trí cố định trong bộ nhớ được gọi là bảng vector ngắt, nơi

lưu giữ địa chỉ của một trình phục vụ ngắt.

- Bộ vi điều khiển nhận địa chỉ ISR từ bảng vector ngắt và nhảy tới đó. Nó bắt

đầu thực hiện trình phục vụ ngắt cho đến lệnh cuối cùng của ISR và trở về chương

trình chính từ ngắt.

 5.2.2. Các bước cho phép và cấm ngắt

Khi bật lại nguồn thì tất cả mọi ngắt đều bị cấm (bị che), có nghĩa là không có

ngắt nào được bộ vi điều khiển đáp ứng trừ khi chúng được kích hoạt.

Các ngắt phải được kích hoạt bằng phần mềm để bộ vi điều khiển đáp ứng

chúng. Có một thanh ghi được gọi là thanh ghi cho phép ngắt IE (Interrupt Enable) – ở

địa chỉ A8H chịu trách nhiệm về việc cho phép và cấm các ngắt.

 97

Bảng sau trình bày chi tiết về thanh ghi IE

Để cho phép một ngắt ta phải thực hiện các bước sau:

- Nếu EA = 0 thì không có ngắt nào được đáp ứng cho dù bit tương ứng của nó

trong IE có giá trị cao. Bit D7 - EA của thanh ghi IE phải được bật lên cao để cho phép

các bit còn lại của thanh ghi hoạt động được.

- Nếu EA = 1 thì tất cả mọi ngắt đều được phép và sẽ được đáp ứng nếu các bit

tương ứng của chúng trong IE có mức cao.

Ví dụ 1: Hãy lập trình cho 8051:

a) cho phép ngắt nối tiếp, ngắt Timer0 và ngắt phần cứng ngoài 1 (EX1)

b) cấm ngắt Timer0

c) sau đó trình bày cách cấm tất cả mọi ngắt chỉ bằng một lệnh duy nhất.

Lời giải:

a) Mov IE, #96h; //1001 0110: lệnh này tương đương với 4 lệnh phía dưới

Hoặc

SetB EA; //Cho phép sử dụng ngắt

SetB ES; //Cho phép ngắt cổng nối tiếp

 SetB ET0; //Cho phép ngắt timer0

SetB EX1; //Cho phép ngắt ngoài 1

b) Mov ET0,#00h; //Cấm ngắt timer0

c) Mov EA,#00h; //Cấm tất cả các ngắt

5.3. Thiết kế chương trình dùng ngắt

Trong các chương trước ta đã biết cách sử dụng các bộ định thời Timer0 và

Timer1 bằng phương pháp thăm dò. Trong phần này ta sẽ sử dụng các ngắt để lập trình

cho các bộ định thời của 8051.

5.3.1 Cờ quay về 0 của bộ định thời và ngắt

Chúng ta đã biết rằng cờ bộ định thời TF được bật lên cao khi bộ định thời đạt

giá trị cực đại và quay về 0 (Roll - over). Trong các phần trước, chúng ta cũng chỉ ra

cách kiểm tra cờ TF bằng một vòng lặp. Trong khi thăm dò cờ TF thì ta phải đợi cho

đến khi cờ TF được bật lên. Vấn đề với phương pháp này là bộ vi điều khiển bị trói

buộc trong khi chờ cờ TF được bật và không thể làm được bất kỳ việc gì khác.

 98

Sử dụng các ngắt sẽ giải quyết được vấn đề này và tránh được sự trói buộc bộ vi

điều khiển. Nếu bộ ngắt định thời trong thanh ghi IE được phép thì mỗi khi nó quay

trở về 0 bộ vi điều khiển sẽ bị ngắt, bất chấp nó đang thực hiện việc gì và nhảy tới

bảng vector ngắt để phục vụ ISR. Bằng cách này thì bộ vi điều khiển có thể làm những

công việc khác cho đến khi nó được thông báo rằng bộ định thời đã quay về 0. Xem

hình 3 và ví dụ 1.

5.3.2. Các bước lập trình ngắt định thời

Để hiểu trình tự lập trình ngắt định thời, ta xem các ví dụ sau:

Ví dụ 1: Hãy viết chương trình nhận liên tục dữ liệu 8 Bit ở cổng P0 và gửi nó

đến cổng P1 trong khi nó cùng lúc tạo ra một sóng vuông chu kỳ 200ms trên chân

P2.1.

Hãy sử dụng bộ Timer0 để tạo ra sóng vuông, tần số của 8051 là XTAL =

11.0592MHz.

Lời giải:

Bước 1: tìm giá trị cần nạp cho thanh ghi timer và xác định chế độ hoạt động

của timer

Theo yêu cầu Chu kỳ 200ms, vậy nửa chu kỳ là 100ms. Ta có:

100ms/1,085ms=92. (Đối với mạch hoạt động với tần số thạch anh 11.0592 Mhz) Suy

ra giá trị cần nạp cho timer0 là: -92 <=> A4H. Ta sử dụng timer0 chế độ 2, 8 bit tự nạp

lại.

Chương trình viết bằng Assembly

Org 0000h Ljmp Main ; Nhảy đến chương trình chính, tránh dùng không

gian bộ

nhớ ; của ngắt

Org 000Bh ; Bảng vectơ ngắt của timer0

Cpl P2.1 ; Đảo mức cho chân P2.1

Reti ; Kết thúc chương trình con, về chương trình chính

Org 0030h Main:

Mov TMOD,#02h ; Chọn timer 0, chế độ 2 – tự nạp lai

Mov TH0,#-92 ; Nạp giá trị cho thanh ghi TH0

Mov TL0,#-92 ; Nạp giá trị ban đầu cho thanh ghi TL0

Mov P0,#0FFh ; Thiết lập chân P0 làm cổng vào

Mov IE,#82h ; IE = 1000.0010 – cho phép ngắt toàn cục và timer 0

SetB TR0 ; Khởi động timer 0 Back:

Mov A,P0 ; Lấy giá trị cổng vào P0

Mov P1,A ; Xuất giá trị ra lại cổng 1

Sjmp Back ; Lặp lại quá trình

End ; Không cần xóa cờ TF0, 8051 tự động xóa.

Lưu ý: Các xung được tạo ra ở các ví dụ trên không thật sự chính xác, vì chưa

tính đến hao phí của các lệnh. Hãy để ý những điểm dưới đây của chương trình trong

ví dụ 1:

 99

1. Trình ứng dụng không được sử dụng vùng không gian bộ nhớ của ngắt, do đó có

lệnh Ljmp Main

2. Trình phục ngắt có không gian bộ nhớ nhỏ

3. Để cho phép ngắt chúng ta phải thực hiện lệnh cho phép ngắt bộ Timer0 với lệnh

Mov IE, #82h; trong chương trình chính main.

4. Trong khi dữ liệu ở cổng P0 được nhận vào và chuyển liên tục sang cổng P1 thì mỗi

khi bộ Timer0 trở về 0, cờ TF0 được bật lên và bộ vi điều khiển thoát ra khỏi vòng lặp

BACK và nhảy đến địa chỉ 000BH để thực hiện trình phục vụ ISR của bộ Timer0.

5. Trong trình phục vụ ngắt ISR của Timer0 ta thấy rằng không cần đến lệnh xóa cờ

TF0 của timer0 trước lệnh RETI. Lý do này là vì 8051 đã tự xoá cờ TF0 ngay khi nhảy

đến ISR.

5.4. Luyện tập

Bài tập 1: Ngắt theo mức

Giả sử chân INT1 được nối đến công tắc bình thường ở mức cao. Mỗi khi nó ấn

xuống thấp phải bật một đèn LED ở chân P1.3 (bình thường Led tắt), khi nó được bật

lên nó phải sáng vài giây. Chừng nào công tắc được giữ ở trạng thái thấp đèn LED

phải sáng liên tục

Bài tập 2: Ngắt theo sườn

Ngắt theo sườn là ngắt sẽ xảy ra khi có một sườn âm xuất hiện trên các chân

ngắt của vi điều khiển. Điều này làm cho ngắt theo sườn khắc phục được nhược điểm

của ngắt theo mức như ta đã thấy ở trên.

 Để kích hoạt chế độ ngắt theo sườn thì chúng ta phải viết chương trình cài đặt

cho các bit của thanh ghi TCON:

 100

Bài 6: Phần mềm mô phỏng – Lập trình tổng hợp

❖ GIỚI THIỆU BÀI 6

Bài 6 là bài hướng dẫn sử dụng phần mềm mô phỏng các mạch đã được lập trình

trước khi giao tiếp với vi điều khiển, từ đó có phương án xử lý lỗi trong quá trình thực

hiện mạch điều khiển. Trên cơ sở đó người học vận dụng vào các bài tập cụ thể để

soạn thảo được một chương trình điều khiển với những ứng dụng thực tiễn.

❖ MỤC TIÊU CỦA BÀI 6

 - Trình bày được cấu trúc chung của chương trình hợp ngữ theo nội dung đã

học.

 - Thực hiện viêt chương trình tổ chức lớn bằng cách phân chia thành các mô

đun chương trình đúng qui trình kỹ thuật.

 - Viết được chương trình điều khiển theo yêu cầu

 - Dùng Protues mô phỏng được hoạt động của mạch vi điều khiển chạy đúng

theo yêu cầu.

 - Tích cực, chủ động và sáng tạo trong học tập.

❖ PHƯƠNG PHÁP GIẢNG DẠY VÀ HỌC TẬP BÀI 6

- Đối với người dạy: sử dụng phương pháp giảng giảng dạy tích cực (diễn giảng,

vấn đáp, dạy học theo vấn đề); yêu cầu người học thực hiện câu hỏi thảo luận

của bài (cá nhân hoặc nhóm).

- Đối với người học: chủ động đọc giáo trình trước buổi học; hoàn thành đầy đủ

câu hỏi thảo luận theo cá nhân hoặc nhóm và nộp lại cho người dạy đúng thời

gian quy định.

❖ ĐIỀU KIỆN THỰC HIỆN BÀI 6

- Phòng học chuyên môn hóa/nhà xưởng: học tại xưởng thực hành vi điều

khiển – có trang bị các máy tính cài sẵn phần mềm mô phỏng.

- Trang thiết bị máy móc: Máy chiếu và các mô hình, thiết bị dạy học khác

- Học liệu, dụng cụ, nguyên vật liệu: Chương trình mô đun, giáo trình, tài liệu

tham khảo, giáo án, phim ảnh, và các KIT thực hành vi điều khiển.

- Các điều kiện khác: Không có

❖ KIỂM TRA VÀ ĐÁNH GIÁ BÀI 6

- Nội dung:

✓ Kiểm tra và đánh giá tất cả nội dung về kiến thức, kỹ năng đã nêu trong mục

tiêu của bài

✓ Năng lực tự chủ và trách nhiệm: Trong quá trình học tập, người học cần:

 101

+ Nghiên cứu bài trước khi đến lớp

+ Chuẩn bị đầy đủ tài liệu học tập.

+ Tham gia đầy đủ thời lượng môn học.

+ Nghiêm túc trong quá trình học tập.

- Phương pháp:

✓ Điểm kiểm tra thường xuyên: 1 điểm kiểm tra (hình thức – tự luận)

✓ Kiểm tra định kỳ thực hành: 1 điểm kiểm tra (hình thức – Thực hành)

 102

NỘU DUNG BÀI 6

6.1 Phần mềm mô phỏng Proteus

6.1.1. Giới thiệu phần mềm Proteus

Proteus là phần mềm mô phỏng vật lý các mạch điện tử, hay gọi là giả lập linh kiện

trên máy tính, giúp chúng ta có thể dễ dàng thao tác và xử lý trực tiếp mà không cần

phải nối dây hoặc cần các dụng cụ chuyên dụng để thực hành. Phần mềm gồm 2

chương trình chính:

• ISIS cho phép vẽ sơ đồ nguyên lý và mô phỏng mạch

• ARES dùng để vẽ mạch in.

6.1.2. Hướng dẫn sử dụng Proteus để vẽ sơ đồ nguyên lý (Schematic)

Bước 1: Khởi động chương trình Proteus Professional

Chạy chương trình Proteus Professional bằng cách nhấp vào biểu tượng ISIS

Professional trên desktop hoặc chọn Windows >> Programs >> Proteus

Professional >> ISIS Professional.

Sau khi phần mềm khởi động xong thì bạn sẽ thấy phần giao diện của nó như sau:

Bước 2: Mở chương trình ISIS Professional

Nhấp vào biểu tượng Schematic Capture trên thanh công cụ của giao diện Proteus để

mở chương trình con ISIS Professional.

https://vi.wikipedia.org/wiki/Ph%E1%BA%A7n_m%E1%BB%81m_thi%E1%BA%BFt_k%E1%BA%BF_m%E1%BA%A1ch_in

 103

Sau khi chương trình ISIS được mở ra, một vùng làm việc với các nút giao diện

để thiết kế mạch sẽ xuất hiện như hình bên dưới. Các bạn lưu ý trên vùng làm việc của

ISIS có một khung vuông màu xanh, khi vẽ mạch thì bạn phải đảm bảo toàn bộ phần

mạch bạn vẽ phải nằm trong khung vuông này.

Bước 3: Lấy tất cả các linh kiện sử dụng từ thư viện của Proteus

Để chọn mở linh kiện của Proteus, đầu tiên bạn nhấp vào nút Component Mode.

Tiếp theo bạn nhấp vào chữ P để mở thư viện.

 104

Khi thư viện được mở ra, một cửa sổ sẽ xuất hiện như sau:

Trong đó:

Keywords: tìm kiếm linh kiện

Category và Sub-category: chứa các thư viện linh kiện trong chương trình Proteus

Results: hiển thị các linh kiện khi được chọn trong thư viện

Schematic Review: hiển thị hình dạng của linh kiện

PCB Preview: hiển thị sơ đồ chân PCB của linh kiện

Trong cửa sổ chọn linh kiện này bạn gõ tên linh kiện cần tìm vào ô Keywords. Ví dụ,

bạn tìm IC 555, hãy gõ 555 vào ô Keywords thì IC 555 và tất cả các linh kiện liên

quan đến 555 sẽ xuất hiện tự động ở phần Results. Bạn double click vào IC này để

chọn nó. Những linh kiện đã được chọn sẽ xuất hiện ở trong ô Devices.

Bạn thực hiện tương tự và lấy thêm các linh kiện: điện trở, tụ hóa, tụ thường, led đơn,

nguồn pin.

Sau khi đã lấy đầy đủ các linh kiện từ thư viện, bạn nhấp vào nút OK để đóng cửa sổ

thư viện trở về màn hình thiết kế.

Lưu ý: Các linh kiện được chọn phải có sơ đồ chân PCB còn nếu không bạn phải tạo

sơ đồ chân linh kiện khi chuyển sang phần thiết kế mạch in.

Bước 4: Đưa linh kiện ra ngoài màn hình thiết kế

Nhấp chuột vào linh kiện cần lấy trong ô Devices, sau đó di chuyển con trỏ ra ngoài

màn hình thiết kế nơi cần đặt linh kiện và click chuột thì linh kiện sẽ được đặt tại đó.

Bạn di chuyển hết linh kiên ra ngoài màn hình thiết kế như hình sau:

https://dientuviet.com/ic-dinh-thoi-555/

 105

Di chuyển linh kiện

Để di chuyển linh kiện từ vị trí này đến vị trị khác, bạn thao tác như sau:

Nhấp và giữ trái chuột vào linh kiện cần di chuyển, sau đó rê chuột đến vị trí mới và

thả chuột ra. Bạn cũng có thể dùng lệnh Block Move trên thanh công cụ di chuyển linh

kiện.

Xoay linh kiện

Để xoay các linh kiện bạn thao tác như sau:

Đặt con trỏ lên linh kiện cần xoay sau đó bấm phải chuột, bạn chọn các lệnh xoay

(rotate) theo chiều kim đồng hồ, ngược chiều kim đồng hồ, xoay 1800. Bạn có thể lật

(mirror) linh kiện theo chiều ngang hay chiều dọc cũng từ cửa sổ tắt này. Bạn cũng có

thể dùng công cụ Block Rotate trên thanh công cụ để xoay linh kiện.

 106

Xóa linh kiện

Bạn để con trỏ lên linh kiện cần xóa rồi bấm phải chuột sau đó bạn chọn lệnh Delete

Object từ shortcut menu. Bạn cũng có thể dùng phím Delete để xóa linh kiện hoặc

dùng công cụ Block Delete trên thành công cụ để xóa linh kiện.

Bước 5: Thay đổi thông số kỹ thuật của linh kiện

Để vẽ mạch một cách nhanh chóng chúng ta không nhất thiết phải lấy linh kiện có các

thông số chính xác, nhất là trong mạch có nhiều linh kiện giống nhau nhưng khác

thông số kỹ thuật. Nếu lấy từng linh kiện đúng với các thông số yêu cầu thì sẽ mất rất

nhiều thời gian và đôi khi trong thư viện không có linh kiện với thông số mình cần

tìm. Vì vậy, ta cần phải thay đổi các thông số kỹ thuật cho linh kiện.

Ví dụ: Sau khi đặt điện trở ra ngoài màn hình thiết kế, bạn double click vào linh kiện

này, một cửa sổ sẽ hiện ra bạn tiến hành thay đổi tên và giá trị của điện trở vào 2 ô Part

Reference và Resistance tương ứng. Cuối cùng bạn nhấp chọn OK để hoàn tất việc

chỉnh sửa.

 107

Bước 6: Bố trí, sắp xếp lại linh kiện cho hợp lý

Bạn dùng các lệnh di chuyển linh kiện, lật linh kiện,…như đã trình bày ở trên để bố trí,

sắp xếp lại các linh kiện trong mạch sao cho thật hợp lý trước khi tiến hành bước tiếp

theo. Mục đích của việc làm này là làm cho sơ đồ mạch được rõ ràng khi quá trình

thiết kế mạch được hoàn tất.

Bước 7: Nối dây

Sau khi lấy và sắp xếp các linh kiện theo mong muốn, bạn tiến hành nối các chân linh

kiện cho mạch. Bạn tiến hành như sau:

Đặt con trỏ trên chân linh kiện cần nối dây cho đến khi ô vuông màu đỏ xuất hiện sau

đó bạn click chuột vào chân linh kiện và chế độ nối dây được bắt đầu. Bạn rê chuốt

đến chân linh kiện cần nối khác và click chuột một lần nữa để kết thúc quá trình nối

dây. Bạn thao tác tương tự như vậy cho đến khi hoàn thành sơ đồ mạch.

Để xóa đường nối dây sai, bạn nhấp phải chuột trên đường dây nối và chọn Delete

Wire hoặc double click phải trên đường dây nối.

Bước 8: Kiểm tra sơ đồ mạch nguyên lý

Kiểm tra sơ đồ mạch sau khi hoàn thành xong mạch thiết kế là rất quan trong, nó giúp

bạn tìm được những lỗi mà trong quá trình thiết kế bạn chưa phát hiện ra được.

Để kiểm tra lỗi ta thao tác như sau:

Trên thanh công cụ, bạn chọn Tool >> Electrical Rule Check

Nếu có thông lỗi bạn tìm cách khắc phục cho đến khi không còn lỗi và nhận được

dòng thông báo (No ERC errors found) như hình dưới đây nhé.

Sau khi kiểm tra và hiệu chỉnh sơ đồ mạch như mong muốn bạn nhớ lưu lại. Mạch dạo

động đa hài phi ổn dùng IC 555 được vẽ bằng chương trình ISIS của Proteus như sau:

 108

6.2. Thiết kế mạch điều khiển

6.2.1. Giao tiếp điều khiển led 7 đoạn

a/ Sơ đồ mạch điện:

+ C3

10uF/25V

C2
33p

C1
33p

R1
10K

5VDC

EA/VP
31

X1
19

X2
18

RESET
9

P2.0
21

P2.1
22

P2.2
23

P2.3
24

P2.4
25

P2.5
26

P2.6
27

V
C

C
4
0

VSS
20

U3

8051

R3
10K

12Mhz

A

B

D

C

G

F

E

Có hai loại led 7 đoạn: Anốt chung và Catốt chung. Hình dưới là sơ đồ chân của hai

loại led.

 109

a b

dotcV-de

f g V-

1 2 3 4 5

678910

A

B

C

DOTD

E

F

G

D10

LED CATOT Chung

a b

dotcV+de

f g V+

1 2 3 4 5

678910

A

B

C

DOTD

E

F

G

D11

LED CATOT Chung

Cấu tạo như sau: Chỉ là 8 con led đấu chung 1 đầu: Anốt hoặc Catốt.

3

7 6 4 2 1 10 9 5

A B C D E F G DP

8

D12A

Catot chung

3

7 6 4 2 1 10 9 5

8

D13A

Anot chung

b/ Nguyên lí hoạt động:

 Khi đấu nguồn vào mạch tất cả các chân của các cổng IO của VĐK là 5V (Nếu

cổng 0 không lắp điện trở treo thì sẽ là 0V). Nhìn sơ đồ mạch không có chênh lệch

điện áp nên không có đèn nào sáng. Muốn sáng thanh nào chỉ việc đưa ra điện áp 0V ở

chân vi điều khiển nối với thanh đó.

 Thanh hiện Thanh tắt Giá trị (P2)

 Để hiện thị số 1: B,C các thanh còn lại 1111 1001

 Để hiện thị số 2: A,B,D,E,G các thanh còn lại 1010 0100

 ….

Để hiện thị số 8: Tất cả các thanh không thanh nào 1000 0000

 gfe dcba

 Bít thứ 8 P2.7 không dùng.

 Ngoài ra led 7 thanh còn có thể hiện thị 1 số chữ

 Đê hiển thị chữ B: Giống sô 8

 Hiển thị chữ A: A,B,C,E,F,G D 1000 1000

c/ Soạn thảo chương trình:

 Ví dụ:

 110

 Hàm hiển thị số 1:

void so1(void)

{ tat();

P2=0xF5;}

Mô phỏng cho hiển thị cổng P2 lên. Để dấu lựa chọn ở các đèn tắt (1) , bỏ dấu lựa

chọn ở các đèn cần bật (0). Rồi đọc giá trị hexa.

d/ Nạp chương trình:

6.2.2. Đọc bàn phím:

Đọc ma trận phím.

Nhiệm vụ:

 Quét bàn phím 16 phím bấm (4x4), xem phím nào được bấm, các phím được

đánh số từ 0 đến 15 rồi hiển thị giá trị ra led 7 thanh.

a/ Sơ đồ mạch điện:

5V

5V

C1
33p

C2
33p

+ C3

10uF/25V

R1
10K

5VDC

5V5V5V

EA/VP
31

X1
19

X2
18

RESET
9

P2.0
21

P2.1
22

P2.2
23

P2.3
24

P2.4
25

P2.5
26

P2.6
27

V
C

C
4
0

VSS
20

P3.1
11

P3.2
12

P3.3
13

P3.4
14

P3.5
15

P3.6
16

P3.7
17

P3.0
10

U3

8051

R3
10K

12Mhz

C

B

A

E

D

G

F

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7

5V

LED 7 THANH
HANG 2

HANG 1

COT 4

COT 3

COT 2

COT 1

HANG 4

HANG 3P3.2

R21

R

R22

R

R23

R

R24

R

R25

R

R26

10Kx8

R27

R

R28

R

P3.0
P3.1

1 2

PHIM 1

1 2

PHIM 2

1 2

PHIM 3

1 2

PHIM 4

1 2

PHIM 5

P3.3

1 2

PHIM 6

P3.4

1 2

PHIM 7

1 2

PHIM 8

1 2

PHIM 9

1 2

PHIM 10

1 2

PHIM 11

1 2

PHIM 12

P3.5
1 2

PHIM 13

P3.6

1 2

PHIM 14

1 2

PHIM 15

1 2

PHIM 16

P3.7

b/ Nguyên lí quét phím:

- Có 2 cách quét phím theo cột và theo hàng, ta chọn cách quét theo hàng, quét

theo cột có thể làm tương tự.

 - Bước 1: Ta đưa chân P3.0 nối với Hàng 1 xuống 0V. Kiểm tra giá trị logic của

các chân P3.4,P3.5,P3.6,P3.7. Nếu phím 1 được bấm thì Cột 1_ P3.4 sẽ có giá trị bằng

0. Nếu phím 2 được bấm thì Cột 2_ P3.5 sẽ có giá trị bằng 0. Nếu phím 3 được bấm thì

 111

Cột 3_ P3.6 sẽ có giá trị bằng 0. Nếu phím 4 được bấm thì Cột 4_ P3.7 sẽ có giá trị

bằng 0. Ta căn cứ vào đó để xác định xem phím nào được bấm.

 - Bước 2: Đưa chân P3.1 nối với Hàng 2 xuống 0V. Kiểm tra giá trị logic của

các chân P3.4,P3.5,P3.6,P3.7. Nếu phím 5 được bấm thì Cột 1_ P3.4 sẽ có giá trị bằng

0. Nếu phím 6 được bấm thì Cột 2_ P3.5 sẽ có giá trị bằng 0. Nếu phím 7 được bấm thì

Cột 3_ P3.6 sẽ có giá trị bằng 0. Nếu phím 8 được bấm thì Cột 4_ P3.7 sẽ có giá trị

bằng 0. Ta căn cứ vào đó để xác định xem phím nào được bấm.

 - Bước 3: Đưa chân P3.2 nối với Hàng 3 xuống 0V. Kiểm tra giá trị logic của

các chân P3.4,P3.5,P3.6,P3.7. Nếu phím 9 được bấm thì Cột 1_ P3.4 sẽ có giá trị bằng

0. Nếu phím 10 được bấm thì Cột 2_ P3.5 sẽ có giá trị bằng 0. Nếu phím 11 được bấm

thì Cột 3_ P3.6 sẽ có giá trị bằng 0. Nếu phím 12 được bấm thì Cột 4_ P3.7 sẽ có giá

trị bằng 0. Ta căn cứ vào đó để xác định xem phím nào được bấm.

 - Bước 4: Ta đưa chân P3.3 nối với Hàng 1 xuống 0V. Kiểm tra giá trị logic của

các chân P3.4,P3.5,P3.6,P3.7. Nếu phím 13 được bấm thì Cột 1_ P3.4 sẽ có giá trị

bằng 0. Nếu phím 14 được bấm thì Cột 2_ P3.5 sẽ có giá trị bằng 0. Nếu phím 15 được

bấm thì Cột 3_ P3.6 sẽ có giá trị bằng 0. Nếu phím 16 được bấm thì Cột 4_ P3.7 sẽ có

giá trị bằng 0. Ta căn cứ vào đó để xác định xem phím nào được bấm.

Dùng câu lệnh if để kiểm tra.

c/ Soạn thảo chương trình:

- Tạo 1 project mới, copy phần hiển thị các sô 0…9 các chữ A…Y của bài trứơc. Rồi

bổ sung các hàm sau. Hàm hiện thị phím ấn.

void phim_duoc_an(unsigned char phim)

{

 switch(phim)// Tuy vao so lan

 {case 0: { so0(); break; }// Neu so lan =0 hien so 0 thoat khoi switch

 case 1: { so1(); break; }// Neu so lan =1 hien so 1 thoat khoi switch

 case 2: { so2(); break; }//

 case 3: { so3(); break; }

 case 4: { so4(); break; }

 case 5: { so5(); break; }

 case 6: { so6(); break; }

 case 7: { so7(); break; }

 case 8: { so8(); break; }

 case 9: { so9(); break; }// Neu so lan =9 hien so 9 thoat khoi switch

 }}

 112

Hàm quét phím:

/*Khai bao 1 mang 4 phan tu nhu sau: quetphim[4]={P0=0xFE,0xFD,0xFB,0xF7}

De dua 0 ra lan luot cac hang phim, khi do neu nut nao duoc an thi chan vi dieu khien

se xuong 0.Chu y fai kiem tra phim khoang 100 lan.*/

unsigned char quetphim[4]={0xFE,0xFD,0xFB,0xF7};

// Dinh nghia so lan quet phim

#define solanquetphim 100 // Cac ban co the thay doi gia tri nay cho phu hop

unsigned char quetbanphim(void)

{

unsigned char giatribanphim;// Bien de luu gia tri phim an tu 0 den 15 ma hoa 16 phim

unsigned char x,y;

 //Quet 4 hang phim

 for(x=0; x<4;x++)

 {

P3=quetphim[x];// Dua lan luot cac hang xuong 0

 for(y=0;y<solanquetphim;y++)// Kiem tra solanquetphim lan

 {if(P3_4==0) giatribanphim=0+4*x;// Gia tri phim tuong ung

 if(P3_5==0) giatribanphim=1+4*x;// Tuy thuoc vao hang x

 if(P3_6==0) giatribanphim=2+4*x;// La may ma gia tri cua

 if(P3_7==0) giatribanphim=3+4*x;// gia tri ban phim tuong ung.

 } }

 return(giatribanphim);

}

Hàm Main.

void main(void)

{

unsigned char i;

 while(1)

 {

 i=quetbanphim();

 phim_duoc_an(i);

 }}

 113

Thêm câu lệnh #define vào đầu chương trình:

Viết hàm phím được ấn:

 114

Viết hàm quét bàn phím và hàm main.

6.2.3. Điều khiển LCD 16x2

 Nhiệm vụ: Điều khiển hiển thị LCD 16x2 dòng chữ “www.EmbestDKS.com”

chạy trên màn hình LCD.

Có 16 chân như sau:

Chân Ký hiệu I/O Mô tả

1 VSS - Đất

2 VCC - Dương nguồn 5v

3 VEE - Cấp nguồn điều khiển phản

 115

4 RS I RS = 0 chọn thanh ghi lệnh. RS = 1 chọn

thanh dữ liệu

5 R/W I R/W = 1 đọc dữ liệu. R/W = 0 ghi

6 E I/O Cho phép

7 DB0 I/O Các bít dữ liệu

8 DB1 I/O Các bít dữ liệu

9 DB2 I/O Các bít dữ liệu

10 DB3 I/O Các bít dữ liệu

11 DB4 I/O Các bít dữ liệu

12 DB5 I/O Các bít dữ liệu

13 DB6 I/O Các bít dữ liệu

14 DB7 I/O Các bít dữ liệu

Chân 15 và chân 16 là anốt và katốt của 1 led dùng để sáng LCD trong bóng tối.

Chúng ta không sử dụng. Nếu muốn dùng thì nối chân A qua 1 điện trở từ 1K đến 5K

lên dương 5V, chân K xuống mass đèn sẽ sáng.

a/ Sơ đồ mạch điện:

D5
D6
D7

R
S

R
w

E
N

EN
Rw

RS

RST
9

XTAL2
18

XTAL1
19

G
N

D
2
0

PSEN
29ALE/PROG
30EA/VPP
31

V
C

C
4
0

P1.0
1

P1.1
2

P1.2
3

P1.3
4

P1.4
5

P1.5
6

P1.6
7

P1.7
8

P2.0/A8
21P2.1/A9
22P2.2/A10
23P2.3/A11
24P2.4/A12
25P2.5/A13
26P2.6/A14
27P2.7/A15
28

P3.0/RXD
10

P3.1/TXD
11

P3.2/INT0
12

P3.3/INT1
13

P3.4/T0
14

P3.5/T1
15

P3.6/WR
16

P3.7/RD
17

P0.0/AD0
39

P0.1/AD1
38

P0.2/AD2
37

P0.3/AD3
36

P0.4/AD4
35

P0.5/AD5
34

P0.6/AD6
33

P0.7/AD7
32

U1

AT89C51

1
23456789

1
0

R1 10K

5V
VCC

123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

J1

LCD

R2

5K

Y1
12Mhz

C1
33p

C2
33p

R3
10K

5V

LCD16x02

+ C3
CAPACITOR POL

5V5V

C6

104

D0
D1
D2
D3
D4

 116

b/ Nguyên lí hoạt động của LCD:

- Chân VCC, VSS và VEE: Các chân VCC, VSS và VEE: Cấp dương nguồn - 5v và

đất tương ứng thì VEE được dùng để điều khiển độ tương phản của LCD.

- Chân chọn thanh ghi RS (Register Select): Có hai thanh ghi trong LCD, chân

RS (Register Select) được dùng để chọn thanh ghi như sau: Nếu RS = 0 thì thanh ghi

mà lệnh được chọn để cho phép người dùng gửi một lệnh chẳng hạn như xoá màn

hình, đưa con trỏ về đầu dòng v.v… Nếu RS = 1 thì thanh ghi dữ liệu được chọn cho

phép người dùng gửi dữ liệu cần hiển thị trên LCD.

- Chân đọc/ ghi (R/W): Đầu vào đọc/ ghi cho phép người dùng ghi thông tin lên

LCD khi R/W = 0 hoặc đọc thông tin từ nó khi R/W = 1.

- Chân cho phép E (Enable): Chân cho phép E được sử dụng bởi LCD để chốt

dữ liệu của nó. Khi dữ liệu được cấp đến chân dữ liệu thì một xung mức cao xuống

thấp phải được áp đến chân này để LCD chốt dữ liệu trên các chân dữ liêu. Xung này

phải rộng tối thiểu là 450ns.

- Chân D0 - D7: Đây là 8 chân dữ liệu 8 bít, được dùng để gửi thông tin lên

LCD hoặc đọc nội dung của các thanh ghi trong LCD. Để hiển thị các chữ cái và các

con số, chúng ta gửi các mã ASCII của các chữ cái từ A đến Z, a đến f và các con số từ

0 - 9 đến các chân này khi bật RS = 1.

Cũng có các mã lệnh mà có thể được gửi đến LCD để xoá màn hình hoặc đưa

con trỏ về đầu dòng hoặc nhấp nháy con trỏ.

- Chú ý: Chúng ta cũng sử dụng RS = 0 để kiểm tra bít cờ bận để xem LCD có

sẵn sàng nhân thông tin. Cờ bận là bít D7 và có thể được đọc khi R/W = 1 và RS = 0

như sau:

Nếu R/W = 1, RS = 0 khi D7 = 1 (cờ bận 1) thì LCD bận bởi các công việc bên

trong và sẽ không nhận bất kỳ thông tin mới nào. Khi D7 = 0 thì LCD sẵn sàng nhận

thông tin mới. Lưu ý chúng ta nên kiểm tra cờ bận trước khi ghi bất kỳ dữ liệu nào lên

LCD.

- Sau đây là bảng mã lệnh của LCD:

Mã (Hex) Lệnh đến thanh ghi của LCD

1 Xoá màn hình hiển thị

2 Trở về đầu dòng

4 Giảm con trỏ (dịch con trỏ sang trái)

6 Tăng con trỏ (dịch con trỏ sang phải)

5 Dịch hiển thị sang phải

7 Dịch hiển thị sang trái

8 Tắt con trỏ, tắt hiển thị

A Tắt hiển thị, bật con trỏ

C Bật hiển thị, tắt con trỏ

 117

E Bật hiển thị, nhấp nháy con trỏ

F Tắt con trỏ, nhấp nháy con trỏ

10 Dịch vị trí con trỏ sang trái

14 Dịch vị trí con trỏ sang phải

18 Dịch toàn bộ hiển thị sang trái

1C Dịch toàn bộ hiển thị sang phải

80 Ép con trỏ về đầu dòng thứ nhất

C0 Ép con trỏ về đầu dòng thứ hai

38 Hai dòng và ma trận 5  7

- Điều khiển LCD qua các bước sau:

 Bước 0 : Chuẩn bị phần cứng. Xoay biến trở 5 K điều chỉnh độ tương phản của

LCD. Xoay cho đến khi các ô vuông (các điểm ảnh) của LCD hiện lên thì xoay ngược

biến trở lại 1 chút.

 Bước 1 : Khởi tạo cho LCD.

 Bước 2 : Gán các giá trị cho các bit điều khiển các chân RS,RW,EN cho phù

hợp với các chế độ: Hiển thị kí tự lên LCD hay Thực hiện 1 lệnh của LCD.

 Bước 3: Xuất byte dữ liệu ra cổng điều khiển 8 bit dữ liệu của LCD.

 Bước 4: Kiểm tra cờ bận xem LCD sẵn sàng nhận dữ liệu mới chưa.

 Bước 5: Quay vòng lại bước 1.

c/ Lập trình:

 - Để có thể lập trình cho LCD ta thêm vào thư viện string.h của trình biên dịch

bằng câu lệnh:

 #include <string.h>

 - Khai báo các chân của LCD gắn với các cổng:

 /*

 RS chon thanh ghi

 =0 ghi lenh; =1 ghi du lieu

 RW doc ghi

 =0 ghi; =1 doc

 E cho fep chot du lieu

 xung cao xuong thap toi thieu 450 ns.

 Bit co ban D7

 khi RS=0 RW=1 neu D7=1 LCD ban; D7=0 LCD san sang.

*/

 118

sfr LCDdata = 0xA0;// Cong 2, 8 bit du lieu P0 co dia chi 0x80, P1 0x90 , P2 0xA0

sbit BF = 0xA7; // Co ban bit 7

sbit RS = P3^5;

sbit RW = P3^4;

sbit EN = P3^3;

- Viết 1 số hàm điều khiển LCD như sau:

* Hàm kiểm tra LCD có bận hay không:

void wait(void)

{ long n = 0;

 EN=1;// Dua chan cho fep len cao

 RS=0;// Chon thanh ghi lenh

 RW=1;// Doc tu LCD

 LCDdata=0xFF;// Gia tri 0xFF

 while(BF){n++; if(n>100) break;}// Kiem tra co ban

 // Neu ban dem n den 100 roi thoat khoi while

 EN=0;// Dua xung cao xuong thap de chot

 RW=0;// Doc tu LCD

}

* Hàm điều khiển LCD thực hiện 1 lệnh:

void LCDcontrol(unsigned char x)

{ EN=1;// Dua chan cho fep len cao

 RS=0;// Chon thanh ghi lenh

 RW=0;// Ghi len LCD

 LCDdata=x;// Gia tri x

 EN=0;// Xung cao xuong thap

 wait();// Doi LCD san sang

}

 Hàm có 1 biến đầu vào là các giá trị trong bảng mã lệnh của LCD.

* Hàm khởi tạo LCD:

void LCDinit(void)

{ LCDcontrol(0x30);//Che do 8 bit.

 119

 LCDcontrol(0x30);

 LCDcontrol(0x30);

 LCDcontrol(0x38);// 2 dong va ma tran 5x7

 LCDcontrol(0x0C);// Bat con tro

 LCDcontrol(0x06);// Tang con tro xang fai

 LCDcontrol(0x01);// Xoa man hinh

}

* Hàm lệnh cho LCD hiển thị 1 kí tự :

void LCDwrite(unsigned char c)

{ EN=1;// Cho fep muc cao

 RS=1;// Ghi du lieu

 RW=0;// Ghi len LCD

 LCDdata=c;// Gia tri C

 EN=0;// Xung cao xuong thap

 wait();// Cho

}

 Hàm có 1 biến đầu vào là mã của kí tự trong bảng ASCII.

* Hàm lệnh cho LCD hiển thị 1 xâu kí tự (dòng chữ):

void LCDputs(unsigned char *s,unsigned char row)

{

unsigned char len;

if(row==1) LCDcontrol(0x80);// Ep con tro ve dau dong 1

else LCDcontrol(0xC0);// Ep con tro ve dau dong 2

 len=strlen(s);// Lay do dai bien duoc tro boi con tro

 while(len!=0)// Khi do dai van con

 {

 LCDwrite(*s);// Ghi ra LCD gia tri duoc tro boi con tro

 s++;// Tang con tro

 len--;// Tru do dai

 }

}

 120

Hàm có hai biến đầu vào là: xâu kí tự cần hiển thị và dòng cần hiển thị xâu đó (1 hoặc 2).

*s là con trỏ, trỏ tới biến s

* Hàm hiển thị 1 số integer:

void LCDwritei(int d)

{

unsigned char i,j,k,l;

i=d%10;// Chia lay phan du, duoc chu so hang don vi

d=d/10;// Chia lay phan nguyen, duoc nhung chu so da bo hang don vi

j=d%10;// Duoc chu so hang chuc

d=d/10;// Nhung chu so da bo hang don vi va hang chuc

k=d%10;// Duoc hang tram

l=d/10;// Duoc hang nghin

LCDwrite(48+l);// Hien thi ki tu trong bang ascii

LCDwrite(48+k);// Trong bang ascii so 0 co co so thu tu la 48

LCDwrite(48+j);

LCDwrite(48+i);

}

 Hàm có 1 biến đầu vào là số int lớn đến hàng nghìn cần hiển thị.

* Hàm trễ:

void delay(long time)

{

 long n;

 for(n=0;n<time;n++) ;

}

* Hàm main:

void main(void)

{

char x;

 LCDinit();

 LCDputs("8052 MCU",1);

 delay(30000);

 121

 while(1)

 { for(x=0;x<16;x++)// Dich 16 lan.

 { LCDputs("8052 MCU",1);

 LCDcontrol(0x18);// Dich hien thi sang trai.

 delay(5000);// Tre

 } } }

6.2.4. Điều chế độ rộng xung – Điều khiển tốc độ động cơ

 Nhiệm vụ:

 Tạo ra xung có độ rộng thay đổi, 10 cấp, tần số 1Khz, để điều khiển tốc độ

động cơ (10 cấp tốc độ).

a/ Sơ đồ mạch điện:

+ C3

10uF/25V

C2
33p

C1
33p

R1
10K

5VDC

1 2

SW1

1 2

SW2

X1
19

X2
18

RESET
9

P2.0
21

V
C

C
4
0

VSS
20

EA
31

P1.0
1

P1.1
2

U1

8051

12Mhz

3 B

2
 C

1
 E

C828

1
2

A

-

+
DC Motor

12V

R2
10K

b/ Soạn thảo chương trình:

- Cách tạo xung có độ rộng thay đổi bằng VĐK.

 + Cách 1: Việc điều khiển nhấp nháy 1 con led, đó là tạo ra 1 xung ở 1 chân của

vi điều khiển, nhưng xung đó có độ rộng cố định, tần số lớn, ta có thể điều chỉnh lại

hàm delay để tần số của nó đúng 1 Khz. Tuy nhiên vì là dùng hàm delay nên trong thời

gian có xung lên 1 (5V) và thời gian không có xung (0V) vi điều khiển không làm gì

cả, hơn nữa tạo xung bằng việc delay mà cần 2 bộ phát xung ở 2 kênh, có cùng tần số

mà khác độ rộng xung thì trở nên rất khó khăn. Cho nên chúng ta dùng bộ định thời

Timer của vi điều khiển trong trường hợp này rất tiện.

 122

 + Cách 2: Dùng ngắt Timer của bộ vi điều khiển.

Ngắt do Cờ Địa chỉ vector

Reset hệ thống RST 0000H

Ngắt ngoài 0 IE0 0003H

Bộ định thời 0 TF0 000BH

Ngắt ngoài 1 IE1 0013H

Bộ định thời 1 TF1 001BH

Port nối tiếp RI hoặc TI 0023H

Bộ định thời 2 TF2 hoặc EXF2 002BH

Ngắt do Cờ Địa chỉ vector

Reset hệ thống RST 0000H

Ngắt ngoài 0 IE0 0003H

Bộ định thời 0 TF0 000BH

Ngắt ngoài 1 IE1 0013H

Bộ định thời 1 TF1 001BH

Port nối tiếp RI hoặc TI 0023H

Bộ định thời 2 TF2 hoặc EXF2 002BH

Riêng ngắt Reset không tính, bắt đầu đếm từ 0 và từ ngắt ngoài 0.

- Để sử dụng ngắt ta phải làm các công việc sau:

 1) Khởi tạo ngắt: dùng ngắt nào thì cho phép ngắt đó hoạt động bằng cách gán

giá trị tương ứng cho thanh ghi cho phép ngắt IE (Interrupt Enable):

EA ET2 ES ET1 EX1 EX0 ET0

 Điều khiển các nguồn ngắt

IE (0: không cho phép; 1: cho phép)

IE.7 EA Cho phép/ không cho phép toàn cục

IE.6 --- Không sử dụng

IE.5 ET2 Cho phép ngắt do bộ định thời 2

IE.4 ES Cho phép ngắt do port nối tiếp

IE.3 ET1 Cho phép ngắt cho bộ định thời 1

IE.2 EX1 Cho phép ngắt từ bên ngoài (ngắt ngoài 1)

IE.1 EX0 Cho phép ngắt từ bên ngoài (ngắt ngoài 0)

IE.0 ET0 Cho phép ngắt do bộ định thời 0

EA ET2 ES ET1 EX1 EX0 ET0

 Điều khiển các nguồn ngắt

IE (0: không cho phép; 1: cho phép)

IE.7 EA Cho phép/ không cho phép toàn cục

IE.6 --- Không sử dụng

IE.5 ET2 Cho phép ngắt do bộ định thời 2

IE.4 ES Cho phép ngắt do port nối tiếp

 123

IE.3 ET1 Cho phép ngắt cho bộ định thời 1

IE.2 EX1 Cho phép ngắt từ bên ngoài (ngắt ngoài 1)

IE.1 EX0 Cho phép ngắt từ bên ngoài (ngắt ngoài 0)

IE.0 ET0 Cho phép ngắt do bộ định thời 0

IE là thanh ghi có thể xử lí từng bít.

 2) Cấu hình cho ngắt: Trong 1 ngắt nó lại có nhiều chế độ ví dụ: với ngắt timer.

Ta phải cấu hình cho nó chạy ở chế độ nào, chế độ timer hay counter, chế độ 16 bit,

hay 8 bit,… bằng cách gán các giá trị tương ứng cho thanh ghi TMOD (Timer MODe).

TMOD Chọn model cho bộ định thời 1

7 GATE Bít điều khiển cổng. Khi được set lên 1, bộ định

thời chỉ hoạt động trong khi INT1 ở mức cao

6 C/T Bít chọn chức năng đếm hoặc định thời:

 1= đếm sự kiện

 0= định thời trong một khoảng thời gian

5 M1 Bit chọn chế độ thứ nhất

4 M0 Bit chọn chế độ thứ 2

 M1 M0 Chế độ Chức năng

 0 0 0 Chế độ định thời 13 bit

 0 1 1 Chế độ định thời 16 bit

 1 0 2 Chế độ tự động nạp lại 8 bit

 1 1 3 Chế độ định thời chia xẻ

3 GATE Bit điều khiển cổng cho bộ định thời 0

2 C/T Bit chọn chức năng đếm / định thời cho bộ định

thời 0

1 M1 Bit chọn chế độ thứ nhất cho bộ định thời 0

0 M0 Bit chọn chế độ thứ 2 cho bộ định thời 0

TMOD Chọn model cho bộ định thời 1

7 GATE Bít điều khiển cổng. Khi được set lên 1, bộ định

thời chỉ hoạt động trong khi INT1 ở mức cao

6 C/T Bít chọn chức năng đếm hoặc định thời:

 1= đếm sự kiện

 0= định thời trong một khoảng thời gian

5 M1 Bit chọn chế độ thứ nhất

4 M0 Bit chọn chế độ thứ 2

 M1 M0 Chế độ Chức năng

 0 0 0 Chế độ định thời 13 bit

 0 1 1 Chế độ định thời 16 bit

 1 0 2 Chế độ tự động nạp lại 8 bit

TMOD Chọn model cho bộ định thời 1

7 GATE Bít điều khiển cổng. Khi được set lên 1, bộ định

 124

thời chỉ hoạt động trong khi INT1 ở mức cao

6 C/T Bít chọn chức năng đếm hoặc định thời:

 1= đếm sự kiện

 0= định thời trong một khoảng thời gian

5 M1 Bit chọn chế độ thứ nhất

4 M0 Bit chọn chế độ thứ 2

 M1 M0 Chế độ Chức năng

 0 0 0 Chế độ định thời 13 bit

 0 1 1 Chế độ định thời 16 bit

 1 0 2 Chế độ tự động nạp lại 8 bit

 1 1 3 Chế độ định thời chia xẻ

3 GATE Bit điều khiển cổng cho bộ định thời 0

2 C/T Bit chọn chức năng đếm / định thời cho bộ định

thời 0

1 M1 Bit chọn chế độ thứ nhất cho bộ định thời 0

0 M0 Bit chọn chế độ thứ 2 cho bộ định thời 0

 3) Bắt đầu chương trình có ngắt:

- Trước khi bắt đầu cho chạy chương trình ta phải cho phép ngắt toàn cục được

xảy ra bằng cách gán EA (Enable All interrupt) bằng 1, thì ngắt mới xảy ra.

- Thường thì ngay vào đầu chương trình (hàm main) trước vòng while (1)

chúng ta đặt công việc khởi tạo, cấu hình và cho phép kiểm tra ngắt. Ví dụ với bộ định

thởi timer ta gán các giá trị phù hợp cho thanh ghi TCON(Timer CONtrol).

TCON Điều khiển bộ đinh thời

TCON.7 TF1 Cờ tràn của bộ định thời 1. Cờ này được set bởi phần

cứng khi có tràn, được xoá bởi phần mềm, hoặc bởi

phần cứng khi bộ vi xử lý trỏ đến trình phục vụ ngắt

TCON.6 TR1 Bit điều khiển hoạt động của bộ định thời 1. Bit này

được set hoặc xoá bởi phần mềm để điều khiển bộ định

thời hoạt động hay ngưng

TCON.5 TF0 Cừ tràn của bộ định thời 0

TCON.4 TR0 Bit điều khiển hoạt động của bộ định thời 0

TCON.3 IE1 Cừ ngắt bên ngoài 1 (kích khởi cạnh). Cờ này được set

bởi phần cứng khi có cạnh âm (cuống) xuất hiện trên

chân INT1, được xoá bởi phần mềm, hoặc phần cứng

khi CPU trỏ đến trình phục vụ ngắt

TCON.2 IT1 Cờ ngắt bên ngoài 1 (kích khởi cạnh hoặc mức). Cờ này

được set hoặc xoá bởi phần mềm khi xảy ra cạnh âm

hoặc mức thấp tại chân ngắt ngoài

TCON.1 IE0 Cờ ngắt bên ngoài 0 (kích khởi cạnh)

TCON.0 IT0 Cờ ngắt bên ngoài 0 (kích khởi cạnh hoặc mức)

TCON Điều khiển bộ đinh thời

TCON.7 TF1 Cờ tràn của bộ định thời 1. Cờ này được set bởi phần

cứng khi có tràn, được xoá bởi phần mềm, hoặc bởi

 125

phần cứng khi bộ vi xử lý trỏ đến trình phục vụ ngắt

TCON.6 TR1 Bit điều khiển hoạt động của bộ định thời 1. Bit này

được set hoặc xoá bởi phần mềm để điều khiển bộ định

thời hoạt động hay ngưng

TCON.5 TF0 Cừ tràn của bộ định thời 0

TCON.4 TR0 Bit điều khiển hoạt động của bộ định thời 0

TCON.3 IE1 Cừ ngắt bên ngoài 1 (kích khởi cạnh). Cờ này được set

bởi phần cứng khi có cạnh âm (cuống) xuất hiện trên

chân INT1, được xoá bởi phần mềm, hoặc phần cứng

khi CPU trỏ đến trình phục vụ ngắt

TCON.2 IT1 Cờ ngắt bên ngoài 1 (kích khởi cạnh hoặc mức). Cờ này

được set hoặc xoá bởi phần mềm khi xảy ra cạnh âm

hoặc mức thấp tại chân ngắt ngoài

TCON.1 IE0 Cờ ngắt bên ngoài 0 (kích khởi cạnh)

TCON.0 IT0 Cờ ngắt bên ngoài 0 (kích khởi cạnh hoặc mức)

Với yêu cầu của bài. Tạo xung tần số 1Khz → Chu kì = 1/103 = 0,001 giây= 1 mili

giây=1000 uS= 1000 chu kì máy. Với 10 cấp tốc độ, tức là bạn phải tạo ra được xung

10%, 20%, 30%, 40%, …, 90%, 100%. 1 xung như sau:

 5V

 0V

 T : Chu kì

 1000 miro giây.

Khoảng thời gian xung kéo dài 5V là T1. Xung 10% tức là T1/ T= 10%=1/10. Xung

20% T2/T=2/10…PWM (Thay đổi độ rộng xung)

c/ Nguyên lí hoạt động:

 - Xung PWM: Đưa ra mở transitor, xung với độ rộng lớn hơn transitor sẽ mở

lâu hơn động cơ sẽ quay nhanh hơn. Không có xung động cơ sẽ không quay, có xung

100% động cơ sẽ quay max.Tuy nhiên xung phải lớn hơn mức nào đó thì mới đủ khởi

động cho động cơ. Để có thể thay đổi 10 cấp tốc độ với chu kì 1000uS, ta khởi tạo cho

ngắt timer: 100 uS ngắt 1 lần. Trong hàm ngắt kiểm tra xem ta cần cấp xung bao nhiêu

% thì ta sẽ gán giá trị cho nó. Cụ thể như sau:

* Hàm khởi tạo ngắt.

 Dùng ngắt timer 0, 100 uS ngắt 1 lần, dùng chế độ 2 8 bit tự động nạp lại của

timer (vì mình chỉ cần đếm đến 100). TL0 nạp bằng 156. Đối với chế độ 2 khi tràn bộ

đếm TL0 sẽ quay vòng giá trị bằng 0, nhưng sau đó nó lại được nạp giá trị lưu trong

TH0 (giá trị nạp lại), do đó ta chỉ cần gán giá trị cho TL0 và TH0 trong hàm khởi tạo,

còn ở các chế độ khác 16 bit, 2 timer counter 8 bit, khi tràn bộ đếm TL0 không được

nạp lại mà ta phải tự gán lại giá trị cho nó trong hàm ngắt.

 126

void khoitaotimer0(void)// Ham khoi tao

{ EA=0;// Cam ngat toan cuc

TMOD=0x02;// Timer 0 che do 2 8 bit auto reload

TH0=0x9B;// Gia tri nap lai 155 doi ra so hex

TL0=0x9B;// Gia tri khoi tao 155 doi ra so hex

ET0=1;// Cho phep ngat timer 0

EA=1;// Cho phep ngat toan cuc

TR0=1;// Chay timer 0 bat dau dem so chu ki may}

* Hàm ngắt:

unsigned char dem=0;// Khai bao bien dem de dem tu 1 den 10

unsigned char phantramxung;// Bien chua phan tram xung(0...10)

void timer0(void) interrupt 1 //Ngat timer 0

{ TR0=0;// Dung chay timer 0

TF0=0;// Xoa co, o che do co tu duoc xoa,che do khac can toi cu viet vao day

dem++;

if(dem<phantramxung) P2_0=1;// Neu bien dem < phan tram xung thi dua gia tri 1 ra

chan, xung 5V

 127

else P2_0=0;// Neu dem = phan tram xung

if(dem==10) dem=0;// Neu dem du 10 thi gan lai bang 0 de bat dau chu ki moi

TR0=1;// Cho chay timer }

Để có thể thay đổi độ rộng xung thì ta lưu độ rộng xung vào 1 biến, vì hàm ngắt không

cho truyền biến vào ta khai báo biến đó là biến toàn cục để có thể gán giá trị ở mọi

hàm.

100 uS ngắt 1 lần để xác định đủ chu kì 1000 uS ta cần đếm từ 1 đến 10 ta khai báo

biến đếm.

void timer0(void) interrupt 1 //Ngat timer 0

{ TR0=0;// Dung chay timer 0

TF0=0;// Xoa co, o che do co tu duoc xoa,che do khac can toi cu viet vao day

TH0=0xAB;

TL0=0xAB;

….

TR0=1;// Cho chay timer}

Cấu trúc hàm ngắt timer nào cũng phải theo, do chế độ 2 tự động nạp lại nên kô cần

gán giá trị cho TH0 và TL0.

Về biến dem sẽ đếm từ 1 đến 10 nếu bằng 10 kết thúc 1 chu kì 10*100 =1000 uS, ta

gán lại nó bằng 0 để sang chu kì mới.

if(dem<phantramxung) P2_0=1;// Neu bien dem < phan tram xung thi dua gia tri 1 ra

chan, xung 5V

else P2_0=0;// Neu dem = phan tram xung

Câu lệnh này kiểm tra nếu đếm nhỏ hơn phantramxung thì sẽ đưa ra cổng giá trị 1,

bằng hoặc lớn hơn sẽ đưa ra giá trị 0. Khi vào chương trình chính ta chỉ việc thay đổi

giá trị biến phantramxung thì độ rộng xung sẽ thay đổi.

* Hàm main:

void main(void)

{ khoitaotimer0();

while(1)

{ phantramxung=9;

delaylong(20000);

phantramxung=4;

delaylong(20000); }}

 128

Giả sử khi các bạn gán phantramxung=4; Thì cứ mỗi 100uS ngắt xảy ra 1 lần, và kiểm

tra biến đếm. Lần đầu dem=1 <4 nên giá trị P2_0 = 1 mức cao, lần thứ 2 , 200 uS, dem

=2<4 P2_0 = 1 mức cao, lần thứ 3, 300uS, dem=3<4, P2_0=1 mức cao, lần thứ 4,

400uS, dem =4 <4 sai, P2_0=0, bắt đầu xuỗng mức thấp, có xung từ cao xuông thấp,

dem = 5<4 sai , P2_0=0 mức thấp, …, dem =10 <4 sai P2_0 mức thấp đủ 1000 uS ,

400uS cao, 600uS thấp quay vòng dem=0, ngắt lần thứ 11, dem=1 < 4 , P2_0=1 mức

cao, có xung thấp lên cao….

Để PWM 2 chân P2_0 và P3_5, các bạn khai báo thêm 1 biến phantramxung2 và đưa

thêm dòng lệnh sau vào hàm ngắt.

if(dem<phantramxung) P3_5=1;// Neu bien dem < phan tram xung thi dua gia tri 1 ra

chan, xung 5V

else P3_5=0;// Neu dem = phan tram xung

Chú ý: Thực ra 1 chu kí như ta vừa làm không chính xác 100% là 1Khz, vì ta chưa tính

đến độ dài của hàm ngắt,mỗi lần ngắt 100uS, 10 lần là 1000uS đã đủ, còn thời gian

thực hiện hàm ngắt nữa, như vậy là chu kì của ta lớn hơn 1000uS, tần sỗ sẽ <1Khz,

nhưng thực sự sai số đó không đáng kể. Nếu các bạn muốn chính xác tôi cũng chiều

lòng các bạn. Các bạn chạy debug, để thạch anh đúng 12Mhz, quan sat dòng sec xem

hàm ngắt diễn ra trong bao nhiêu chu kì máy, khi nạp giá trị cho TL0 và TH0 ta lấy

155 trừ đi giá trị đó được gía trị a gán vào, như vậy a+thời gian thực hiện hàm ngắt

đúng đủ 100uS.

 129

Chú ý: Chỉ được chạy với động cơ công suất nhỏ, nếu động cơ công suất lớn phải có

mạch điều khiển riêng.

6.2.5. Điều khển Led ma trận

Nhiệm vụ:

 Điều khiển Led ma trận 8x8. Hiện thị dòng chữ chạy “MTC”

Chuẩn bị:

 Led ma trận 8x8

12345678

9 10 11 12 13 14 15 16

LED MATRIX 1

8x8

Sơ đồ chân led ma trận 8x8:

Chân Cột Hàng Chân Cột Hàng

1 4 9 8

2 2 10 5

3 7 11 3

 130

4 6 12 5

5 1 13 8

6 4 14 7

7 3 15 2

8 6 16 6

a/ Sơ đồ mạch điện:

Hang6

VCC

C
o
t
3

Cot4

H
a
n
g
1

H
a
n
g
3

Hang4

Hang8
Cot7

H
a
n
g
7

Cot3 Hang3

C2
33p

C
o
t
2

Cot2
Hang1

H
a
n
g
6

12345678

9 10 11 12 13 14 15 16

LED MATRIX 1

8x8

C
o
t
1

H
a
n
g
5

C
o
t
5

10K

H
a
n
g
2

Cot1

Hang7

Cot5

C1
33p

C
o
t
6

C
o
t
8

Hang5

R2
10K

Hang2

U1

8051

29
30

40

2
0

31

19
18

9

39
38
37
36
35
34
33
32

1
2
3
4
5
6
7
8

21
22
23
24
25
26
27
28

10
11
12
13
14
15
16
17

PSEN
ALE

VCC G
N

D

EA

X1
X2

RST

P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
P0.6/AD6
P0.7/AD7

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P2.0/A8
P2.1/A9

P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15

P3.0/RXD
P3.1/TXD

P3.2/INT0
P3.3/INT1

P3.4/T0
P3.5/T1

P3.6/WR
P3.7/RD

Cot6

H
a
n
g
4

C
o
t
4

+

C3

10uF

R3

1
23456789

Cot8

Y1

12M

C
o
t
7

H
a
n
g
8

 131

b/ Nguyên lí hoạt động:

Hang 1

D4

LED

C
o
t6

D4

LED

D3

LED

C
o
t3

D6

LED

D8

LED

C
o
t5

D8

LED

D6

LED

D5

LED

C
o
t4

Hang 3

D7

LED
D5

LED

D8

LED

D4

LED

D5

LED

D2

LED

D8

LED

D7

LED

D6

LED

D5

LED

Hang 7

D4

LED

D2

LED

D4

LED

D6

LED

D2

LED

D3

LED

D6

LED

D5

LED

D2

LED
D7

LED

D2

LED

D8

LED

Hang 5

D8

LED

D8

LED

D5

LED

D8

LED

D8

LED

C
o
t8

C
o
t2

D2

LED

D5

LED

D6

LED

D7

LED
D2

LED

D8

LED

D8

LED

D3

LED

D8

LED

D2

LED
Hang 2

D4

LED

D4

LED

D8

LED

D3

LED

Hang 4

D3

LED

D3

LED

C
o
t1

D8

LED

D6

LED

D4

LED
D6

LED

D7

LED

D7

LED

Hang 6

D8

LED

D3

LED

D7

LED

D8

LED

Hang 8

D7

LED

C
o
t7

D3

LED

D5

LED

 Muốn cho led sáng, cấp điện dương 5V vào hàng, 0V vào cột, dòng 10mA đến

15 mA.

Ví dụ: muốn đèn led ở vị trí 5x4 sáng, ta đưa điện áp cột 4(P0_3) xuống 0V, điện áp

hàng 5(P2_5) lên 5V.

Hiển thị chữ: thống kê các điểm sáng thành chữ rồi cho các hàng cột điện áp tương

ứng. Có thể dùng công cụ debug để lấy giá trị cổng tương ứng với các led sáng.

Giống như quét bàn phím, đưa điện áp 0V ra từng cột nối với cổng 0. Như vậy sẽ có 8

giá trị: 0xFE, 0xFD, 0xFB, 0xF7, 0xEF, 0xDF, 0xBF, 0x7F phảI đưa vào 1 mảng 8

phần tử, rồi sau đó đưa vào 1 vòng for tăng dần 1 biến để tăng phần tử mảng cot[8].

Với mỗi lần 1 chân cổng 0 xuống 0V ta dùng cổng 2 đưa ra 1 giá trị 8 bít để điều khiển

trong 1 cột nhứng đèn nào sáng. Ví dụ muốn hàng 1 và hàng 3 sáng thì hàng 1 và 3 có

giá trị 5V còn các hàng khác 0V, ta được giá trị 8 bít sau: 0x05 (1010 000).

Tại mỗi thời điểm chỉ có một số đèn trên 1 cột sáng, nhưng do ta quét 8 cột với tần số

nhanh, vì mắt có hiện tượng lưu ảnh nên ta thấy trong 1 thời điểm ta thấy toàn bộ kí tự.

Với 8 cột lần lượt bằng 0V ta phảI đưa ra tương ứng 8 giá trị 8 bit ra cổng 2, do đó ta

fảI lưu 8 giá trị đó vào 1 mảng 8 kí tự_ kytu1[8], ta sẽ viết các ký tự trên 7 cột. Để mỗi

kí tự sẽ cách nhau 1 cột không sáng. Ta khai báo mảng kytu1[9] có 9 phần tử và phần

tử đầu tiên có giá trị đẩy ra cổng 2 là 0x00 để tắt toàn bộ cột đó.

 132

Quá trình điều khiển hiển thị như sau:

 Cột 1, hàng 1, cột 2 hàng 2, …, cột 8 , hàng 8.

Để làm chữ chạy:

 Thêm 1 biến vào để điều khiển thứ tự hiển thị hàng.

 Hiện 1 chữ trên led như trên đã đưa ra:

 Cột 1, hàng 1, cột 2 hàng 2, …, cột 8 , hàng 8.

 Muốn chữ đó dịch chuyển sang tráI ta hiển thị như sau:

 Cột 1, hàng 2, cột 2 hàng 3, …, cột 7, hàng 8,cột 8 , hàng 1 ký tự sau.

Cột 1, hàng 3, cột 2 hàng 4, …, cột 7 hàng 1 ký tự sau,cột 8 , hàng 2 ký tự sau.

6.2.6. Bài tập mở rộng

Theo các chủ đề thực tiễn với ý tưởng sáng tạo của giáo viên và học sinh.

Chủ đề 1: Điều khiển hệ thống tín hiệu, cảnh báo, bảo vệ.

Chủ đề 2: Điều khiển cơ cấu kiểm tra, giám sát, bảo mật.

Chủ đề 3: Điều khiển cơ cấu nâng hạ.

Chủ đề 4: Điều khiển hệ thống quảng cáo, bảng điện tử

Chủ đề 5: Điều khiển cơ cấu truyền chuyển động cơ khí.

 133

TÀI LIỆU THAM KHẢO

[1]. I. Scott Mackenzie, The 8051 Microcontroller

[2]. INTEL, The MCS*51 Microcontroller Family User’s Manuel, 1994.

[3]. ATMEL, The AT89 Family of Microcontrollers, 2003.

[4]. SIEMENS, Microcomputer Components – SAB80C515 8 bit Single-chip

Microcontroller Family, 1995.

[5]. Walter H. Buchbaum. Sc.D, Microprocessor and IC families.

[6]. HPI Fachbuchreihen Pflaum Verlag Munchen, Mikrocompute Lehrbuch.

[7]. Rev 5 - Paul Stoffregen, 8951 Development Boad,

[8]. Văn Thế Minh, Kỹ thuật Vi xử lý, NXB GD - 1997.

[9]. Đỗ Xuân Tiến, Kỹ thuật VXL & lập trình ASSEMBLY cho hệ VXL, NXB

KH&KT - 2001.

[10]. Tống văn On, Họ vi điều khiển, Đại học Bách khoa TP.HCM

